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ABSTRACT. In Chapter 29 of Davenport’s classic book [1], it is shown that given any A > 0

we have )

q
Z Z Y(z;q,a) — 2| <2Qloga
= o(q)
a,q)=

uniformly for all z(logz)~4 < Q < z, where

d(ziga):= Y Aln)

n<x
n=a (mod q)

and A(n) is the von Mangolt function. This result is known as the Davenport—Halberstam
theorem. In this short note we present a simple proof of the following folklore version for
the Mobius function p(n) (for instance, see [3, Theorem 2]): for any given A > 0,

S IMGg,0)F = 52Q + 0 (o (log) )

q<Qa=1
holds uniformly for all z(logz)~4 < Q < x, where

M(z;q,a) = Z w(n).

n<x
n=a (mod q)

The author learned this result from a Number Theory Web Seminar talk given by Robert
C. Vaughan in 2022.

In Chapter 29 of Davenport’s classic book [1], it is shown that given any A > 0 we have

2

q
> > ‘w(x;q,a)—i < aQlogx
= #(q)

uniformly for all z(logz)™* < Q < x, where

Y(riga) = Y An)

n<x
n=a (mod q)

and A(n) is the von Mangolt function. This result is known as the Davenport—Halberstam
theorem. Subsequent improvements have been obtained by Montgomery [4], who shows that
the left-hand side above is

Qzlogx + O(Qrlog(22/Q)) + O (mQ(log x)fA)
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in the stated range, and by Hooley [2], who derives the following asymptotic formula for the
left-hand side above with an explicit second-order term:

Qrlog Q — cQX + O (Q*2** + 2*(logx) ™)

for some constant ¢ € R. In this short note we present a simple proof of the following folklore
version for the Mébius function p(n) (for instance, see [3, Theorem 2]).

Theorem. Fizing an arbitrary A > 0 we have

> IM(zig,0)f = %wQ + 0 (z*(logz)~*)

9<Q a=1
uniformly for all x(logz)~* < Q < x, where

M(ziqa):= > p(n).

n<x
n=a (mod q)

Proof. Set Qg := x(logx)~". Applying the arithmetic large sieve [5, Theorem 4.13] to the
sequence
{ pu(n) if n <z with n = a (mod q),
a, =

0 otherwise,
we have
x 4+ q2
[M(w;q,0)" < = > un),
q n<lx
n=a (mod q)
where
b
=S T 205
m<gq plm
and

w(p) :=#{h € F,: a, =0 for all n < z with n = a (mod¢q) and n = h (modp)} < p.

Since w(p) = p — 1 for all p | ¢, it follows that

L= Y pm)* [T =1 =Y nmPe((m.q) =Y nlm)*>q.

m<q plm, plg m<q m<q

where ¢ is the Euler totient function. Hence

S el < 3 +q2u P < (wlog Qo+ Qf) v < w*(loga) ™. (1)

q<Qo a=1 q<Qo n<q

On the other hand, we write

Yo X IM@ga)f = (1Q) - Q)Y _pm)3*+2 Y > plmuln).  (2)

Qo<q<Q a=1 n<z Qo<g<@Q m<n<lz
m=n (mod q)
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Note that

oD wmupn) =Y > um) > pn).  (3)

Qo<q<Q m<n<z r<z/Qo m<z—Qor m+Qor<n<min(z,m+Qr)
m=n (mod q) n=m (modr)

Now we appeal to the following version of the Siegel-Walfisz theorem: for any fixed B > 0

we have

M (z;q,a) < xexp(—c(B)y/logz)
uniformly for all ¢ < (logz)? and 1 < a < ¢, where ¢(B) > 0 depends only on B. Since
1/Qo = (logz)?, the right-hand side of (3) is

< rexp(~c(A)iogr) 3 3 [ulm)

r<z/Qo m<zr—Qor

< (logz)* exp(—c(A)y/logz) Y |u(m)|

n<x
< 2*(logz)™.

Inserting this estimate into (2) we obtain

Z Z |M(z;q,a)” = %IQ +0 (IQ(logx)_A) .

Qo<g<Q a=1

Combining this with (1) yields the desired asymptotic formula. O
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