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ABSTRACT. For an odd prime p, denote by n, the least (positive) quadratic non-residue
modulo p. Vinogradov [15] proved that n, = O(p®(logp)?), where a = 1/(2\/e). Here we
present an elementary proof of this result due to Davenport and Erdés [4]. We shall also
discuss upper bounds for the least (positive) primitive root g, modulo p that are related to
Vinogradov’s work [16], and in particular, Hua’s result [11] that g, < 2™*!,/p, where m
denotes the number of distinct prime factors of p — 1.

1. INTRODUCTION

Let p be an odd prime and let n, denote the least (positive) quadratic non-residue modulo
p. By definition, we know that n, must be prime. It is also easy to show that n, < (p—1)/2
for all p > 5. Indeed, this is clear if p = 1 (mod 4), since (—1/p) = 1, where (-/p) is the
Legendre symbol (mod p). Suppose now that p = 3 (mod 4). If (p — 1)/2 is a quadratic
non-residue (mod p), then n, < (p —1)/2. If (p — 1)/2 is a quadratic residue (mod p), say
z? = (p—1)/2 (mod p) for some x € Z, then 22*> = —1 (mod p). Since (—1/p) = —1, this
implies that 2 is a quadratic non-residue (mod p) and hence n, =2 < (p—1)/2. In the case
p = 3 (mod 4), this argument actually shows that n, < max(d, (p — 1)/d), where d is any
positive divisor of p — 1. By choosing d to be the largest divisor of p — 1 with d < /p — 1,
we may expect that n, is at most O(,/p). Such a non-trivial upper bound for n, (with an
extra log p factor) can be obtained from the Pdlya-Vinogradov inequality:

M+N

> x(n) < /qlogg,
n=M+1
where M, N are any integers, ¢ > 1 is a positive integer, and x is any non-principle Dirichlet
character (mod ¢). Indeed, taking ¢ =p, M =1, N =n, — 1 and x(n) = (n/p) we obtain
ny = O(y/plogp). For an elementary proof of the Pélya-Vinogradov inequality, see [5, §23].
See also [8] for a short proof using Fourier analysis and for results on various generalized
character sums. Vinogradov [15] proved that n, = O(p*(log p)?), where o = 1/(2y/e). This
was further improved by Burgess [2] who showed that n, = O(p®) for any given o > 1/(4/e).
Burgess derived this result based on Weil’s estimate for the complete sum of the Legendre

symbols of polynomial values:
i (f (l’))
p

z=1

< (n=1vp,

where n > 1 is an odd integer, p is an odd prime, and f € F,[z] is a polynomial of degree
n. The case n = 1 is trivial, for the sum on the left side is always 0. Weil’s estimate is
a consequence of the proof of the Riemann hypothesis for curves over finite fields due to
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Weil himself, though improvements have been obtained by Korobov [12] and Grechnikov
9] using elementary methods. It was conjectured by Vinogradov that n, = O(pf) for any
given € > 0. Vinogradov’s conjecture is important in that it is intimately related to deep
questions about smooth numbers and the zeros of quadratic Dirichlet L-functions. Linnik
[13] proved this conjecture under the generalized Riemann hypothesis. He also showed by
means of the large sieve that for any € > 0, the number of primes p < N with n, > N¢ is
Oc(1). Thus Vinogradov’s conjecture holds for most primes. Later Ankeny [1] showed that
the generalized Riemann hypothesis implies n, = O((log p)?).

In the next section of this note, we shall present an elementary proof of Vinogradov’s bound
due to Davenport and Erdés [4]. In fact, we shall prove the following slight improvement.

Theorem 1. n, = O((/plogp)®) for all odd primes p, where a = 1/\/e.

Among all the quadratic non-residues modulo a prime p, the primitive roots, namely the
generators of I := IF,,\ {0}, are of special interest. For a fixed prime p > 3, denote by g, the
least (positive) primitive root modulo p. It is clear that g, is a quadratic non-residue (mod p)
and g, > n,. Let m denote the number of distinct prime factors of p — 1. Vinogradov [16]
proved that g, < 2™,/p(p — 1)/¢(p — 1) for sufficiently large p, improving his earlier result
that g, < 2™,/plogp. Here ¢ is Euler’s totient function. Hua [11] showed that g, < 2™, /p.
Since 2™ = O(p®) for every fixed € > 0, Hua’s result implies that g, = O(p®) for every fixed
o > 1/2. Using Brun’s sieve, Erdés [6] proved that g, < /p(logp)'" for sufficiently large p,
which is better than Hua’s estimate when m is large compared to loglogp. Later Erdos and
Shapiro [7] improved Hua’s result slightly to g, = O(m®,/p), where ¢ > 0 is a constant. Using
his estimates for character sums, Burgess [3] obtained g, = O(p®) for any given a > 1/4.
However, these results are substantially weaker than expected, since Shoup [14] proved under
the assumption of the generalized Riemann hypothesis that g, = O((mlog(m+1))*(log p)?).
We shall present a short proof of Hua’s result due to Erdés and Shapiro [7] in the last section.

Theorem 2. g, < 2m+1\/ﬁ for all sufficiently large p, where m is the number of distinct
prime factors of p — 1.

2. PROOF OF THEOREM 1

The proof of Theorem 1 depends on the following simple identity [4, Lemma 1]:

Zx(x—l—n)

n=1

p

D

r=1

— h(p—h), (1)

where 1 < h < p and x is any non-principle Dirichlet character (mod p). To prove (1), we
expand the square of the inner sum and observe that the contribution from the diagonal

terms is
D) Ixt@+n) =h(p—1).

n=1 z=1

Thus, to prove (1) it suffices to show that the contribution from the non-diagonal terms is

Z ZX(:L’ +ny)X(z +ng) = —h(h —1).

ni,ne=1 =1
n1F#ng
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This would follow if we can show
Zxx+n1 (xr+mn9) =—1 (2)

for all ny,ny € Z with ny # ny (mod p). There are a few ways to prove (2). The proof
that Davenport and Erdés gave in their paper makes use of the substitution = + n; =
y(x +ns) (mod p), which gives a bijection between z # —n; (mod p) and y # 1 (mod p). It
then follows from the orthogonality relation that

me+n1 (x + no9) ZX =—1.

The argument that the author came up with by himself goes as follows. It is easily seen that
(2) is equivalent to the statement that

ZX X(x+a)=-1 (3)

holds for all a € (Z/pZ)*, where (Z/pZ) is the multiplicative group of Z/pZ. Denote by
f(a) the expression on the left side of (3). Then

= Zx(ax)x(al‘—ka ZX X(x+1) = f(1).

Thus f is constant on (Z/pZ)*. By the orthogonality relation we have

o) = 3 A o xe ) = S| Sl = -

for all a € (Z/pZ)*. This completes the proof of (3), and hence the proof of (2).
It may be worth noting that Burgess obtained his estimate for the least quadratic non-
residue (mod p) by treating the more general 2r-th moment

p 2r
r=1

with x(n) = (n/p). Based on Weil’s estimate mentioned earlier, he showed that the above
sum is less than (2r)"ph” + r(2,/p 4+ 1)h*". The reader is referred to [2] for further details.

We are now in a position to prove Theorem 1. Suppose p > 5. Take h = |\/plogp| > 3
and x(n) = (n/p), where | /plogp| is the integer part of \/plogp. For every positive integer
1 <z < h, denote by N(z,x + h) the number of quadratic non-residues (mod p) in the
interval (x,z + h]. Observe that

h
Zx(x+n):h—2N(x,x+h).

n=1

h

Zx(x +n)

Since every positive quadratic non-residue (mod p) must have a prime divisor ¢ which satisfies
(¢/p) = —1 and hence satisfies ¢ > n,, it follows that

N(z,z+ h) < #{m € (z,x + h]: m has a prime divisor ¢ > n,}.
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If n, > 2h, then N(x,x + h) =0 for all 1 <z < h. Thus we have

Zx(x—l—n):h

for all 1 <z < h. By (1) we have h® < h(p — h), i.e., h* + h — p < 0. But this is false, since

h+1)2 1 2

Hence we must have n, < 2h. This yields the bound that we previously derived from
the Pélya-Vinogradov inequality. By Chebyshev’s estimate [10, Theorem 7] and Mertens’
theorem [10, Theorem 427] we have

Nz+h)< QthJ—ED:h 2 éJrO(logh)

np<q<2h np<q<2h
h
= h(loglog2h —loglogn,) + O <logh> .
Hence
! 1
g X(x+n)2h(1—210g10g2h+210g10gnp+0(m)). (4)
0

n=1

If the right side of (4) is negative, then we have

log ny, < ¢ 1/2+0(/logh) _ ,—1/24108(1+0(1/10g ) _ /2 (1 4 O 1
log 2h logh) )’

which implies that logn, < e */?log2h + O(1). This gives n, = O((/plogp)®), where
a = 1/4/e. Suppose now that the right side of (4) is non-negative. By (3) we obtain

1 2
h? (1 — 2loglog 2h + 2loglogn, + O (@)) < h(p—"h) < hp.

It follows that

1 VP 2P 2 2
1 —2loglog 2h + 2log1 Ol — | <t=< < )
0g log 2fu + 2log log My + (logh) S hel S logp " logh

Thus we have

1
1 —2loglog2h + 2loglogn, + O | —— | < 0.
log h

We can conclude as before that n, = O((,/plogp)®). This finishes the proof of Theorem 1.

3. PROOF OF THEOREM 2

The proof of Theorem 2 depends on a simple inequality for character sums [7, Lemmal.
It states that if A, B C F, with cardinality |A| and |B|, respectively, then

D> x(a+b)| < /plAlB] (5)

acA beB
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for any non-principle Dirichlet character (mod p). To prove this, we consider the Gauss sum
T(x) == Y x(h)ey(h),
heF,
where e,(h) := e>™"/P_ Tt can be shown easily that
= Z x(h)ey(hA).
heF,
and that |T(x)| = \/p (see [5, §2]). Thus we have

(0D xla+b) =Y x(h) (Z ep(ha)) (Z ep<hb)> :

ac€A beB heFy a€A beB
It follows that

ZZX (a+0b)

a€A beB

=2

heF,,

Zep (ha)

acA

)|1D epl(hb)|.

beB

By Cauchy-Schwarz inequality, the right side is

S PICILIN DS

heF, lacA helF,

1 1
2\ 2 2\ 2

> e, ()| | < pVIA[B,

beB

since

2.

heF,

Zep (ha)

a€A

=D D ella—a)h) =) p=pl4

a,a’ €A heFy acA

and similarly
2

Z Zep(hb) = p|B|.
heF, |beB
Hence
VP DY x(a+b)| <pVIA[B],
a€A beB

which gives (5).
Another ingredient needed for the proof of Theorem 2 concerns the values of the sum S(h)
defined for every h € Z with ged(h,p) =1 by

0= S5 3 a0

ord(x)=d

where p is the Mobius function and the inner sum is over all characters y of order d in the
character group (mod p). Let g be any primitive root (mod p), so that h = ¢g* (mod p) for
some 0 < v < p. For every d | (p — 1), put ug := ged(v,d). Then

x(h Z = ca(v),
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where c4(v) is Ramanujan’s sum which is multiplicative as a function of d. Hence

ZM Cd

dlp—1
Note that
Z p(d)ca(v)
T eld)
is multiplicative as a function of n. By [10, Theorem 272] we have
d d
ca(v) = M‘
p(d/uaq)
Let ¢ be a prime and r > 1 a positive integer Then
Z p(d Cd _ M(Q/Uq)
p w(q/uq)
It follows that
ZM HO_M(Q/“q))j
an o e(q/uq)

If h is a primitive root (mod p), then u, =1 for all ¢ | (p — 1). Thus we have

sy =TI <1+ ! ): p-l

1 —1)
St q o(p—1)

On the other hand, if h is not a primitive root (mod p), then u,_; > 1. This implies that
there exists a prime divisor ¢ of p — 1 for which u, = ¢, so that 1 — u(q/u,)/(q/u,) = 0.
Therefore, we have S(h) = 0.

We are now ready to prove Theorem 2. We may assume that g, > 3. Note that S(h) =0
forall 1 <h < g, Taking A= B ={1,2,...,[(gp — 1)/2]}, where |z] is the integer part of
x € R, we obtain

0= S(a+b) = Z”Z S S xa+b)

a€A beB dlp—1 ord (x)=d acA beB

S UEIIED D=5 D 9 D)
d(\lp>11 ord(x)=d a€A beB

It follows that

ZZX(a—i—b)

a€A beB

RIS I =r DD

dlp—1 ord(x)=d
d>1

By (5) we have
(9o = 1)/2)% < Vpllgp = 1)/2] Y |n(d)

dlp—1
d>1
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where we have used the fact that the number of elements of F) of order d equals o(d) (see
[10, Theorem 110]). Note that the sum on the right side represents the number of square-free
positive divisors d > 1 of p — 1. It follows that

[(gp = 1)/2] < (2™ = 1)V/p.

{MJ+1>M+1:@
— 2 .

But

2 2
Therefore, we have

gp < 202" —1)y/p+2 < 2™ /p.
This completes the proof of Theorem 2.
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