

VINOGRADOV'S ESTIMATES FOR THE LEAST QUADRATIC NON-RESIDUES

STEVE FAN

ABSTRACT. For an odd prime p , denote by n_p the least (positive) quadratic non-residue modulo p . Vinogradov [15] proved that $n_p = O(p^\alpha(\log p)^2)$, where $\alpha = 1/(2\sqrt{e})$. Here we present an elementary proof of this result due to Davenport and Erdős [4]. We shall also discuss upper bounds for the least (positive) primitive root g_p modulo p that are related to Vinogradov's work [16], and in particular, Hua's result [11] that $g_p < 2^{m+1}\sqrt{p}$, where m denotes the number of distinct prime factors of $p - 1$.

1. INTRODUCTION

Let p be an odd prime and let n_p denote the least (positive) quadratic non-residue modulo p . By definition, we know that n_p must be prime. It is also easy to show that $n_p \leq (p - 1)/2$ for all $p \geq 5$. Indeed, this is clear if $p \equiv 1 \pmod{4}$, since $(-1/p) = 1$, where (\cdot/p) is the Legendre symbol (\pmod{p}) . Suppose now that $p \equiv 3 \pmod{4}$. If $(p - 1)/2$ is a quadratic non-residue (\pmod{p}) , then $n_p \leq (p - 1)/2$. If $(p - 1)/2$ is a quadratic residue (\pmod{p}) , say $x^2 \equiv (p - 1)/2 \pmod{p}$ for some $x \in \mathbb{Z}$, then $2x^2 \equiv -1 \pmod{p}$. Since $(-1/p) = -1$, this implies that 2 is a quadratic non-residue (\pmod{p}) and hence $n_p = 2 \leq (p - 1)/2$. In the case $p \equiv 3 \pmod{4}$, this argument actually shows that $n_p \leq \max(d, (p - 1)/d)$, where d is any positive divisor of $p - 1$. By choosing d to be the largest divisor of $p - 1$ with $d \leq \sqrt{p - 1}$, we may expect that n_p is at most $O(\sqrt{p})$. Such a non-trivial upper bound for n_p (with an extra $\log p$ factor) can be obtained from the Pólya-Vinogradov inequality:

$$\sum_{n=M+1}^{M+N} \chi(n) \ll \sqrt{q} \log q,$$

where M, N are any integers, $q \geq 1$ is a positive integer, and χ is any non-principle Dirichlet character (\pmod{q}) . Indeed, taking $q = p$, $M = 1$, $N = n_p - 1$ and $\chi(n) = (n/p)$ we obtain $n_p = O(\sqrt{p} \log p)$. For an elementary proof of the Pólya-Vinogradov inequality, see [5, §23]. See also [8] for a short proof using Fourier analysis and for results on various generalized character sums. Vinogradov [15] proved that $n_p = O(p^\alpha(\log p)^2)$, where $\alpha = 1/(2\sqrt{e})$. This was further improved by Burgess [2] who showed that $n_p = O(p^\alpha)$ for any given $\alpha > 1/(4\sqrt{e})$. Burgess derived this result based on Weil's estimate for the complete sum of the Legendre symbols of polynomial values:

$$\left| \sum_{x=1}^p \left(\frac{f(x)}{p} \right) \right| \leq (n - 1)\sqrt{p},$$

where $n \geq 1$ is an odd integer, p is an odd prime, and $f \in \mathbb{F}_p[x]$ is a polynomial of degree n . The case $n = 1$ is trivial, for the sum on the left side is always 0. Weil's estimate is a consequence of the proof of the Riemann hypothesis for curves over finite fields due to

Weil himself, though improvements have been obtained by Korobov [12] and Grechnikov [9] using elementary methods. It was conjectured by Vinogradov that $n_p = O(p^\epsilon)$ for any given $\epsilon > 0$. Vinogradov's conjecture is important in that it is intimately related to deep questions about smooth numbers and the zeros of quadratic Dirichlet L -functions. Linnik [13] proved this conjecture under the generalized Riemann hypothesis. He also showed by means of the large sieve that for any $\epsilon > 0$, the number of primes $p \leq N$ with $n_p > N^\epsilon$ is $O_\epsilon(1)$. Thus Vinogradov's conjecture holds for most primes. Later Ankeny [1] showed that the generalized Riemann hypothesis implies $n_p = O((\log p)^2)$.

In the next section of this note, we shall present an elementary proof of Vinogradov's bound due to Davenport and Erdős [4]. In fact, we shall prove the following slight improvement.

Theorem 1. $n_p = O((\sqrt{p} \log p)^\alpha)$ for all odd primes p , where $\alpha = 1/\sqrt{e}$.

Among all the quadratic non-residues modulo a prime p , the primitive roots, namely the generators of $\mathbb{F}_p^\times := \mathbb{F}_p \setminus \{0\}$, are of special interest. For a fixed prime $p \geq 3$, denote by g_p the least (positive) primitive root modulo p . It is clear that g_p is a quadratic non-residue $(\bmod p)$ and $g_p \geq n_p$. Let m denote the number of distinct prime factors of $p - 1$. Vinogradov [16] proved that $g_p < 2^m \sqrt{p}(p - 1)/\varphi(p - 1)$ for sufficiently large p , improving his earlier result that $g_p < 2^m \sqrt{p} \log p$. Here φ is Euler's totient function. Hua [11] showed that $g_p < 2^{m+1} \sqrt{p}$. Since $2^{m+1} = O(p^\epsilon)$ for every fixed $\epsilon > 0$, Hua's result implies that $g_p = O(p^\alpha)$ for every fixed $\alpha > 1/2$. Using Brun's sieve, Erdős [6] proved that $g_p < \sqrt{p}(\log p)^{17}$ for sufficiently large p , which is better than Hua's estimate when m is large compared to $\log \log p$. Later Erdős and Shapiro [7] improved Hua's result slightly to $g_p = O(m^c \sqrt{p})$, where $c > 0$ is a constant. Using his estimates for character sums, Burgess [3] obtained $g_p = O(p^\alpha)$ for any given $\alpha > 1/4$. However, these results are substantially weaker than expected, since Shoup [14] proved under the assumption of the generalized Riemann hypothesis that $g_p = O((m \log(m+1))^4 (\log p)^2)$. We shall present a short proof of Hua's result due to Erdős and Shapiro [7] in the last section.

Theorem 2. $g_p < 2^{m+1} \sqrt{p}$ for all sufficiently large p , where m is the number of distinct prime factors of $p - 1$.

2. PROOF OF THEOREM 1

The proof of Theorem 1 depends on the following simple identity [4, Lemma 1]:

$$\sum_{x=1}^p \left| \sum_{n=1}^h \chi(x+n) \right|^2 = h(p-h), \quad (1)$$

where $1 \leq h \leq p$ and χ is any non-principle Dirichlet character $(\bmod p)$. To prove (1), we expand the square of the inner sum and observe that the contribution from the diagonal terms is

$$\sum_{n=1}^h \sum_{x=1}^p |\chi(x+n)|^2 = h(p-1).$$

Thus, to prove (1) it suffices to show that the contribution from the non-diagonal terms is

$$\sum_{\substack{n_1, n_2=1 \\ n_1 \neq n_2}}^h \sum_{x=1}^p \chi(x+n_1) \bar{\chi}(x+n_2) = -h(h-1).$$

This would follow if we can show

$$\sum_{x=1}^p \chi(x+n_1)\bar{\chi}(x+n_2) = -1 \quad (2)$$

for all $n_1, n_2 \in \mathbb{Z}$ with $n_1 \not\equiv n_2 \pmod{p}$. There are a few ways to prove (2). The proof that Davenport and Erdős gave in their paper makes use of the substitution $x+n_1 \equiv y(x+n_2) \pmod{p}$, which gives a bijection between $x \not\equiv -n_1 \pmod{p}$ and $y \not\equiv 1 \pmod{p}$. It then follows from the orthogonality relation that

$$\sum_{x=1}^p \chi(x+n_1)\bar{\chi}(x+n_2) = \sum_{y=2}^p \chi(y) = -\chi(1) = -1.$$

The argument that the author came up with by himself goes as follows. It is easily seen that (2) is equivalent to the statement that

$$\sum_{x=1}^p \chi(x)\bar{\chi}(x+a) = -1 \quad (3)$$

holds for all $a \in (\mathbb{Z}/p\mathbb{Z})^\times$, where $(\mathbb{Z}/p\mathbb{Z})^\times$ is the multiplicative group of $\mathbb{Z}/p\mathbb{Z}$. Denote by $f(a)$ the expression on the left side of (3). Then

$$f(a) = \sum_{x=1}^p \chi(ax)\bar{\chi}(ax+a) = \sum_{x=1}^p \chi(x)\bar{\chi}(x+1) = f(1).$$

Thus f is constant on $(\mathbb{Z}/p\mathbb{Z})^\times$. By the orthogonality relation we have

$$f(a) = \frac{1}{p-1} \sum_{x=1}^p \chi(x) \sum_{b=1}^{p-1} \bar{\chi}(x+b) = \frac{1}{p-1} \left| \sum_{x=1}^p \chi(x) \right|^2 - \frac{1}{p-1} \sum_{x=1}^p |\chi(x)|^2 = -1$$

for all $a \in (\mathbb{Z}/p\mathbb{Z})^\times$. This completes the proof of (3), and hence the proof of (2).

It may be worth noting that Burgess obtained his estimate for the least quadratic non-residue \pmod{p} by treating the more general $2r$ -th moment

$$\sum_{x=1}^p \left| \sum_{n=1}^h \chi(x+n) \right|^{2r}$$

with $\chi(n) = (n/p)$. Based on Weil's estimate mentioned earlier, he showed that the above sum is less than $(2r)^r ph^r + r(2\sqrt{p} + 1)h^{2r}$. The reader is referred to [2] for further details.

We are now in a position to prove Theorem 1. Suppose $p \geq 5$. Take $h = \lfloor \sqrt{p} \log p \rfloor \geq 3$ and $\chi(n) = (n/p)$, where $\lfloor \sqrt{p} \log p \rfloor$ is the integer part of $\sqrt{p} \log p$. For every positive integer $1 \leq x \leq h$, denote by $N(x, x+h)$ the number of quadratic non-residues \pmod{p} in the interval $(x, x+h]$. Observe that

$$\sum_{n=1}^h \chi(x+n) = h - 2N(x, x+h).$$

Since every positive quadratic non-residue \pmod{p} must have a prime divisor q which satisfies $(q/p) = -1$ and hence satisfies $q \geq n_p$, it follows that

$$N(x, x+h) \leq \#\{m \in (x, x+h] : m \text{ has a prime divisor } q \geq n_p\}.$$

If $n_p > 2h$, then $N(x, x + h) = 0$ for all $1 \leq x \leq h$. Thus we have

$$\sum_{n=1}^h \chi(x + n) = h$$

for all $1 \leq x \leq h$. By (1) we have $h^3 \leq h(p - h)$, i.e., $h^2 + h - p \leq 0$. But this is false, since

$$h^2 + h > \frac{(h+1)^2}{2} > \frac{p(\log p)^2}{2} > p.$$

Hence we must have $n_p \leq 2h$. This yields the bound that we previously derived from the Pólya-Vinogradov inequality. By Chebyshev's estimate [10, Theorem 7] and Mertens' theorem [10, Theorem 427] we have

$$\begin{aligned} N(x, x + h) &\leq \sum_{n_p \leq q \leq 2h} \left(\left\lfloor \frac{x+h}{q} \right\rfloor - \left\lfloor \frac{x}{q} \right\rfloor \right) = h \sum_{n_p \leq q \leq 2h} \frac{1}{q} + O\left(\frac{h}{\log h}\right) \\ &= h(\log \log 2h - \log \log n_p) + O\left(\frac{h}{\log h}\right). \end{aligned}$$

Hence

$$\sum_{n=1}^h \chi(x + n) \geq h \left(1 - 2 \log \log 2h + 2 \log \log n_p + O\left(\frac{1}{\log h}\right) \right). \quad (4)$$

If the right side of (4) is negative, then we have

$$\frac{\log n_p}{\log 2h} < e^{-1/2+O(1/\log h)} = e^{-1/2+\log(1+O(1/\log h))} = e^{-1/2} \left(1 + O\left(\frac{1}{\log h}\right) \right),$$

which implies that $\log n_p < e^{-1/2} \log 2h + O(1)$. This gives $n_p = O((\sqrt{p} \log p)^\alpha)$, where $\alpha = 1/\sqrt{e}$. Suppose now that the right side of (4) is non-negative. By (3) we obtain

$$h^3 \left(1 - 2 \log \log 2h + 2 \log \log n_p + O\left(\frac{1}{\log h}\right) \right)^2 \leq h(p - h) < hp.$$

It follows that

$$1 - 2 \log \log 2h + 2 \log \log n_p + O\left(\frac{1}{\log h}\right) < \frac{\sqrt{p}}{h} < \frac{2\sqrt{p}}{h+1} < \frac{2}{\log p} < \frac{2}{\log h}.$$

Thus we have

$$1 - 2 \log \log 2h + 2 \log \log n_p + O\left(\frac{1}{\log h}\right) < 0.$$

We can conclude as before that $n_p = O((\sqrt{p} \log p)^\alpha)$. This finishes the proof of Theorem 1.

3. PROOF OF THEOREM 2

The proof of Theorem 2 depends on a simple inequality for character sums [7, Lemma]. It states that if $A, B \subseteq \mathbb{F}_p$ with cardinality $|A|$ and $|B|$, respectively, then

$$\left| \sum_{a \in A} \sum_{b \in B} \chi(a + b) \right| \leq \sqrt{p|A||B|} \quad (5)$$

for any non-principle Dirichlet character $(\text{mod } p)$. To prove this, we consider the Gauss sum

$$\tau(\chi) := \sum_{h \in \mathbb{F}_p} \chi(h) e_p(h),$$

where $e_p(h) := e^{2\pi i h/p}$. It can be shown easily that

$$\chi(h') \tau(\bar{\chi}) = \sum_{h \in \mathbb{F}_p} \chi(h) e_p(hh').$$

and that $|\tau(\chi)| = \sqrt{p}$ (see [5, §2]). Thus we have

$$\tau(\bar{\chi}) \sum_{a \in A} \sum_{b \in B} \chi(a+b) = \sum_{h \in \mathbb{F}_p} \chi(h) \left(\sum_{a \in A} e_p(ha) \right) \left(\sum_{b \in B} e_p(hb) \right).$$

It follows that

$$\sqrt{p} \left| \sum_{a \in A} \sum_{b \in B} \chi(a+b) \right| \leq \sum_{h \in \mathbb{F}_p} \left| \sum_{a \in A} e_p(ha) \right| \left| \sum_{b \in B} e_p(hb) \right|.$$

By Cauchy-Schwarz inequality, the right side is

$$\leq \left(\sum_{h \in \mathbb{F}_p} \left| \sum_{a \in A} e_p(ha) \right|^2 \right)^{\frac{1}{2}} \left(\sum_{h \in \mathbb{F}_p} \left| \sum_{b \in B} e_p(hb) \right|^2 \right)^{\frac{1}{2}} \leq p \sqrt{|A||B|},$$

since

$$\sum_{h \in \mathbb{F}_p} \left| \sum_{a \in A} e_p(ha) \right|^2 = \sum_{a, a' \in A} \sum_{h \in \mathbb{F}_p} e_p((a-a')h) = \sum_{a \in A} p = p|A|$$

and similarly

$$\sum_{h \in \mathbb{F}_p} \left| \sum_{b \in B} e_p(hb) \right|^2 = p|B|.$$

Hence

$$\sqrt{p} \left| \sum_{a \in A} \sum_{b \in B} \chi(a+b) \right| \leq p \sqrt{|A||B|},$$

which gives (5).

Another ingredient needed for the proof of Theorem 2 concerns the values of the sum $S(h)$ defined for every $h \in \mathbb{Z}$ with $\gcd(h, p) = 1$ by

$$S(h) := \sum_{d \mid p-1} \frac{\mu(d)}{\varphi(d)} \sum_{\text{ord}(\chi)=d} \chi(h),$$

where μ is the Möbius function and the inner sum is over all characters χ of order d in the character group $(\text{mod } p)$. Let g be any primitive root $(\text{mod } p)$, so that $h \equiv g^v \pmod{p}$ for some $0 \leq v < p$. For every $d \mid (p-1)$, put $u_d := \gcd(v, d)$. Then

$$\sum_{\text{ord}(\chi)=d} \chi(h) = \sum_{\substack{k=1 \\ \gcd(k, d)=1}}^d e_d(kv) = c_d(v),$$

where $c_d(v)$ is Ramanujan's sum which is multiplicative as a function of d . Hence

$$S(h) = \sum_{d|p-1} \frac{\mu(d)c_d(v)}{\varphi(d)}.$$

Note that

$$\sum_{d|n} \frac{\mu(d)c_d(v)}{\varphi(d)}$$

is multiplicative as a function of n . By [10, Theorem 272] we have

$$c_d(v) = \frac{\mu(d/u_d)\varphi(d)}{\varphi(d/u_d)}.$$

Let q be a prime and $r \geq 1$ a positive integer. Then

$$\sum_{d|q^r} \frac{\mu(d)c_d(v)}{\varphi(d)} = 1 - \frac{\mu(q/u_q)}{\varphi(q/u_q)}.$$

It follows that

$$\sum_{d|n} \frac{\mu(d)c_d(v)}{\varphi(d)} = \prod_{q|n} \left(1 - \frac{\mu(q/u_q)}{\varphi(q/u_q)}\right),$$

If h is a primitive root $(\bmod p)$, then $u_q = 1$ for all $q | (p-1)$. Thus we have

$$S(h) = \prod_{q|(p-1)} \left(1 + \frac{1}{q-1}\right) = \frac{p-1}{\varphi(p-1)}.$$

On the other hand, if h is not a primitive root $(\bmod p)$, then $u_{p-1} > 1$. This implies that there exists a prime divisor q of $p-1$ for which $u_q = q$, so that $1 - \mu(q/u_q)/\varphi(q/u_q) = 0$. Therefore, we have $S(h) = 0$.

We are now ready to prove Theorem 2. We may assume that $g_p \geq 3$. Note that $S(h) = 0$ for all $1 \leq h < g_p$. Taking $A = B = \{1, 2, \dots, \lfloor (g_p-1)/2 \rfloor\}$, where $\lfloor x \rfloor$ is the integer part of $x \in \mathbb{R}$, we obtain

$$\begin{aligned} 0 &= \sum_{a \in A} \sum_{b \in B} S(a+b) = \sum_{d|p-1} \frac{\mu(d)}{\varphi(d)} \sum_{\text{ord}(\chi)=d} \sum_{a \in A} \sum_{b \in B} \chi(a+b) \\ &= \lfloor (g_p-1)/2 \rfloor^2 + \sum_{\substack{d|p-1 \\ d>1}} \frac{\mu(d)}{\varphi(d)} \sum_{\text{ord}(\chi)=d} \sum_{a \in A} \sum_{b \in B} \chi(a+b). \end{aligned}$$

It follows that

$$\lfloor (g_p-1)/2 \rfloor^2 \leq \sum_{d|p-1} \frac{|\mu(d)|}{\varphi(d)} \sum_{\substack{\text{ord}(\chi)=d \\ d>1}} \left| \sum_{a \in A} \sum_{b \in B} \chi(a+b) \right|.$$

By (5) we have

$$\lfloor (g_p-1)/2 \rfloor^2 \leq \sqrt{p} \lfloor (g_p-1)/2 \rfloor \sum_{\substack{d|p-1 \\ d>1}} |\mu(d)|,$$

where we have used the fact that the number of elements of \mathbb{F}_p^\times of order d equals $\varphi(d)$ (see [10, Theorem 110]). Note that the sum on the right side represents the number of square-free positive divisors $d > 1$ of $p - 1$. It follows that

$$\lfloor (g_p - 1)/2 \rfloor \leq (2^m - 1)\sqrt{p}.$$

But

$$\left\lfloor \frac{g_p - 1}{2} \right\rfloor + 1 \geq \frac{g_p - 2}{2} + 1 = \frac{g_p}{2}.$$

Therefore, we have

$$g_p \leq 2(2^m - 1)\sqrt{p} + 2 < 2^{m+1}\sqrt{p}.$$

This completes the proof of Theorem 2.

REFERENCES

- [1] N. C. Ankeny, *The least quadratic non-residue*, Ann. of Math. **55** (2) (1952), 65–72.
- [2] D. A. Burgess, *The distribution of quadratic residues and non-residues*, Mathematika **4** (1957), 106–112.
- [3] D. A. Burgess, *On character sums and primitive roots*, Proc. Lond. Math. Soc. **12** (3) (1962), 179–192.
- [4] H. Davenport and P. Erdős, *The distribution of quadratic and higher residues*, Publ. Math. Debrecen **2** (1952), 252–265.
- [5] H. Davenport, *Multiplicative Number Theory*, 3rd. ed., Grad. Texts in Math., vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by H. L. Montgomery.
- [6] P. Erdős, *On the least primitive root of a prime*, Bull. Lond. Math. Soc. **55** (1945), 131–132.
- [7] P. Erdős and H. N. Shapiro, *On the least primitive root of a prime*, Pacific J. Math. **7** (1957), 861–865.
- [8] J. Friedlander and H. Iwaniec, *Estimates for character sums*, Proc. Amer. Math. Soc. **119** (1993), 365–372.
- [9] E. A. Grechnikov, *An estimate for the sum of Legendre symbols*, Math. Notes **88** (2010), 819–826.
- [10] G. H. Hardy and E. M. Wright, *An introduction to the Theory of Numbers*, 6th. ed., Oxford Univ. Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a forward by A. J. Wiles.
- [11] L.-K. Hua, *On the least primitive root of a prime*, Bull. Amer. Math. Soc. **48** (1942), 726–730.
- [12] P. M. Korobov, *An estimate of the sum of the Legendre symbols*, Dokl. Akad. Nauk SSSR **196** (4) (1971), 764–767.
- [13] U. V. Linnik, *A remark on the least quadratic non-residue*, C. R. (Doklady) Acad. Sci. URSS (N.S.) **36** (1942), 119–120.
- [14] V. Shoup, *Searching for primitive roots in finite fields*, Math. Comp. **58** (1992), 369–380.
- [15] I. M. Vinogradov, *Sur la distribution des résidus et des non-résidus des puissances*, Journal Physico-Math. Soc. Univ. Perm, no. 1 (1918), 94–96.
- [16] I. M. Vinogradov, *On the least primitive root of a prime (in Russian)*, Dokl. Akad. Nauk SSSR **1** (1930), 7–11.

DEPARTMENT OF MATHEMATICS, DARTMOUTH COLLEGE, HANOVER, NH 03755, USA

Email address: `steve.fan.gr@dartmouth.edu`