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For x ≥ y > 1 and u := log x/ log y, let Φ(x, y) denote the 
number of positive integers up to x free of prime divisors 
less than or equal to y. In 1950 de Bruijn [4] studied the 
approximation of Φ(x, y) by the quantity

μy(u)eγx log y
∏
p≤y

(
1 − 1

p

)
,

where γ = 0.5772156... is Euler’s constant and

μy(u) :=
u∫

1

yt−uω(t) dt.

He showed that the asymptotic formula

Φ(x, y) = μy(u)eγx log y
∏
p≤y

(
1 − 1

p

)
+ O

(
xR(y)
log y

)

holds uniformly for all x ≥ y ≥ 2, where R(y) is a positive 
decreasing function related to the error estimates in the Prime 
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Number Theorem. In this paper we obtain numerically explicit 
versions of de Bruijn’s result.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Let x ≥ y > 1 be positive real numbers. Throughout the paper, we shall always write 
u := log x/ log y, and the letters p and q will always denote primes. We say that a positive 
integer n is y-rough if all the prime divisors of n are greater than y. Let Φ(x, y) denote 
the number of y-rough numbers up to x. Explicitly, we have

Φ(x, y) =
∑
n≤x

P−(n)>y

1,

where P−(n) denotes the least prime divisor of n, with the convention that P−(1) = ∞. 
When 1 ≤ u ≤ 2, or equivalently when 

√
x ≤ y ≤ x, we simply have Φ(x, y) = π(x) −

π(y) +1, where π(·) is the prime-counting function. The function Φ(x, y) is closely related 
to the sieve of Eratosthenes, one of the most ancient algorithms for finding primes, and 
it has been extensively studied by mathematicians. A simple application of the inclusion-
exclusion principle enables us to write

Φ(x, y) =
∑

d|P (y)

μ(d)
⌊x
d

⌋
, (1.1)

where �a� is the integer part of a for any a ∈ R, μ is the Möbius function, and P (y)
denotes the product of primes up to y. If y is relatively small in comparison with x, say 
y = xo(1), the above formula can be used to obtain Φ(x, y) ∼ e−γx/ log y as y → ∞, where 
γ = 0.5772156... is Euler’s constant. However, it turns out that this nice asymptotic 
formula does not hold uniformly, as already exemplified by the base case 1 ≤ u ≤ 2.

In 1937, Buchstab [3] showed that for any fixed u > 1, one has Φ(x, y) ∼ ω(u)x/ log y
as x → ∞, where ω(u) is defined to be the unique continuous solution to the delay 
differential equation (uω(u))′ = ω(u − 1) for u ≥ 2, subject to the initial value condition 
ω(u) = 1/u for u ∈ [1, 2]. Comparing this result with the asymptotic formula obtained 
from (1.1), one would expect that ω(u) → e−γ as u → ∞. Indeed, it can be shown 
[13, Corollary III.6.5] that ω(u) = e−γ + O(u−u/2) for u ≥ 1. Moreover, it is known 
that ω(u) oscillates above and below e−γ infinitely often. It is convenient to extend the 
definition of ω(u) by setting ω(u) = 0 for all u < 1, so that ω(u) satisfies the same delay 
differential equation on R \ {1, 2}. In the sequel, we shall write ω′(1) and ω′(2) for the 
right derivatives of ω(u) at u = 1 and u = 2, respectively. With this convention, we have 
(uω(u))′ = ω(u − 1) for all u ∈ R.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Buchstab’s asymptotic formula can be proved easily based on the following identity 
[13, Theorem III.6.3] named after him:

Φ(x, y) = Φ(x, z) +
∑

y<p≤z

∑
v≥1

Φ(x/pv, p) (1.2)

for any z ∈ [y, x]. The Buchstab function ω(u) then appears naturally in the iteration 
process, starting with Φ(x, y) ∼ x/(u log y) in the range 1 < u ≤ 2. Since 1/2 ≤ ω(u) ≤ 1
for u ∈ [1, ∞), Buchstab’s asymptotic formula suggests that the relation Φ(x, y) �
x/ log y holds uniformly for x ≥ y > 1. Thus, it is of interest to seek numerically explicit 
estimates for Φ(x, y) that are applicable in wide ranges. Confirming a conjecture of Ford, 
the author [6] showed that Φ(x, y) < x/ log y holds uniformly for x ≥ y > 1, which is 
essentially best possible when x1−ε ≤ y ≤ εx, where ε ∈ (0, 1) is fixed. On the other 
hand, the values of ω(u) indicate that improvements should be expected in the narrower 
range 2 ≤ y ≤ √

x. In recent work jointly with Pomerance [7], the author proved that 
Φ(x, y) < 0.6x/ log y holds uniformly for 3 ≤ y ≤ √

x. This inequality provides a fairly 
good upper bound for Φ(x, y), especially considering that the absolute maximum of 
ω(u) over [2, ∞) is given by M0 = 0.5671432..., attained at the unique critical point 
u = 2.7632228... of the function (log(u − 1) +1)u−1 on [2, 3]. With a bit more effort, one 
can show, using the Buchstab identity (1.2), that

Φ(x, y) = x

log y

(
ω(u) + O

(
1

log y

))
(1.3)

uniformly for 2 ≤ y ≤ √
x (see [13, Theorem III.6.4]). In Section 2, we shall derive a 

numerically explicit lower bound of this type that suits our needs. Our method can also 
be modified with ease to obtain a numerically explicit upper bound of the same type.

In [4] de Bruijn provided a more precise approximation for Φ(x, y) than ω(u)x/ log y. 
Let us fix some y0 ≥ 2 for the moment. Suppose that there exist a positive constant 
C0(y0) and a positive decreasing function R(z) defined on [y0, ∞), such that R(z) � z−1, 
that R(z) → 0 as z → ∞ and that for all z ≥ y0 we have

|π(z) − li(z)| ≤ z

log zR(z) (1.4)

and
∞∫
z

|π(t) − li(t)|
t2

dt ≤ C0(y0)R(z), (1.5)

where li(z) is the logarithmic integral defined by

li(z) :=
z∫

dt

log t .

0
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The classical version of the Prime Number Theorem allows us to take R(z) =
exp(−c

√
log z) for some suitable constant c > 0. Using the zero-free region of

Korobov and Vinogradov for the Riemann zeta-function, we obtain R(z) =
exp(−c′(log z)3/5(log log z)−1/5) for some absolute constant c′ > 0. If the Riemann Hy-
pothesis holds, then one can take R(z) = c′′z−1/2 log2 z, where c′′ > 0 is an absolute 
constant.

To state de Bruijn’s result, we define

μy(u) :=
u∫

1

yt−uω(t) dt.

It is easy to see that 0 ≤ μy(u) log y ≤ 1 − y1−u and that for every fixed u ≥ 1, we have 
μy(u) log y → ω(u) as y → ∞. Precise expansions for μy(u) in terms of the powers of 
log y can be found in [13, Theorem III.6.18]. When 1 ≤ u ≤ 2, the change of variable 
t = log v/ log y shows that

μy(u)x =
u∫

1

t−1yt dt =
x∫

y

dv

log v = li(x) − li(y).

Since Φ(x, y) = π(x) − π(y) + 1 when 1 ≤ u ≤ 2, (1.4) clearly implies that

Φ(x, y) = μy(u)x + (π(x) − li(x)) − (π(y) − li(y)) + 1 = μy(u)x + O

(
xR(y)
log y

)
.

It can be shown using (1.4) and (1.5) that

∏
p≤y

(
1 − 1

p

)
= e−γ

log y (1 + O(R(y))) .

Thus we have, equivalently,

Φ(x, y) = μy(u)eγx log y
∏
p≤y

(
1 − 1

p

)
+ O

(
xR(y)
log y

)
. (1.6)

Essentially, de Bruijn [4] showed that this formula holds uniformly for x ≥ y ≥ y0. In 
Section 3 we shall derive an explicit version of (1.6), which will be applied in Section 4
to obtain numerically explicit estimates with suitable y0 and R(y). Our main results are 
summarized in the following theorem.

Theorem 1.1. Uniformly for x ≥ y ≥ 2, we have∣∣∣∣∣∣Φ(x, y) − μy(u)eγx log y
∏ (

1 − 1
p

)∣∣∣∣∣∣ < 4.403611 x

(log y)3/4
exp

(
−
√

log y
6.315

)
.

p≤y
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Conditionally on the Riemann Hypothesis, we have

∣∣∣∣∣∣Φ(x, y) − μy(u)eγx log y
∏
p≤y

(
1 − 1

p

)∣∣∣∣∣∣ < 0.449774x log y
√
y

uniformly for x ≥ y ≥ 11.

The following consequence of Theorem 1.1 is sometimes more convenient to use.

Corollary 1.2. Uniformly for x ≥ y ≥ 2, we have

|Φ(x, y) − μy(u)x| < 4.434084 x

(log y)3/4
exp

(
−
√

log y
6.315

)
.

Conditionally on the Riemann Hypothesis, we have

|Φ(x, y) − μy(u)x| < 0.460680x log y
√
y

uniformly for x ≥ y ≥ 11.

2. Lower bounds for Φ(x, y)

Before moving on to the derivation of Theorem 1.1, we prove a clean lower bound for 
Φ(x, y) which is applicable in a wide range. This lower bound, which is interesting in 
itself, will be used in the proof of Theorem 1.1 and Corollary 1.2 in Section 4. We start 
by proving the following result, which provides a numerically explicit lower bound for 
the implicit constant in the error term in (1.3). As we already mentioned, our method 
can easily be adapted to yield a numerically explicit upper bound as well, though it will 
not be needed in the present paper.

Proposition 2.1. Define Δ(x, y) by

Φ(x, y) = x

log y

(
ω(u) + Δ(x, y)

log y

)

for 2 ≤ y ≤ √
x. Let y0 = 602. For every positive integer k ≥ 3, we define

Δ−
k = Δ−

k (y0) := inf {min(Δ(x, y), 0) : y ≥ y0 and 2 ≤ u < k} .

Then Δ−
3 > −0.563528, Δ−

4 > −0.887161, and Δ−
k > −0.955421 for all k ≥ 5.
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Proof. Let y1 := 2,278,383. Suppose first that y ≥ y1 and set

G(v) :=
∑

x1/v<p≤√
x

1
p

for 2 ≤ v ≤ u. By [5, Theorem 5.6],1 we have
∣∣∣G(v) − log v

2

∣∣∣ ≤ c1

log2 y
(2.1)

for all y ≥ y1, where c1 = 0.4/ log y1. We shall also make use of the following inequality 
[5, Corollary 5.2]2:

z

log z

(
1 + c3

log z

)
≤ π(z) ≤ z

log z

(
1 + c2

log z

)
, (2.2)

where c2 = 1 +2.53816/ log y1 and c3 = 1 +2/ log y1. We start with the range 2 ≤ u ≤ 3. 
In this range, we have

Φ(x, y) = #{n ≤ x : P−(n) > y and Ω(n) ≤ 2}

= π(x) − π(y) + 1 +
∑

y<p≤√
x

∑
p≤q≤x/p

1

= π(x) − π(y) + 1 +
∑

y<p≤√
x

(π(x/p) − π(p) + 1),

where Ω(n) denotes the total number of prime factors of n, with multiplicity counted. 
Since

∑
y<p≤√

x

(π(p) − 1) =
∑

π(y)<j≤π(
√
x)

(j − 1) = π(
√
x)(π(

√
x) − 1)

2 − π(y)(π(y) − 1)
2 ,

we see that

π(x) − π(y) + 1 −
∑

y<p≤√
x

(π(p) − 1) > π(x) − π(
√
x)2

2 + π(
√
x)

2 .

It follows from (2.2) that

1 In [2] it is claimed that the proof of [5, Theorem 4.2] is incorrect due to the application of an incorrect 
zero density estimate of Ramaŕe [10, Theorem 1.1]. In a footnote on p. 2299 of the same paper, the authors 
state that the bounds asserted in [5] are likely affected for this reason. However, since they also give a 
correct proof of [5, Theorem 4.2] (see [2, Corollary 11.2]), one verifies easily that the proof of [5, Theorem 
5.6], which relies only on [5, Theorem 4.2], partial summation, and numerical computation, remains valid.
2 For the same reason mentioned above, it is reasonable to suspect that the bounds given in [5, Corollary 

5.2] are also affected. However, one can verify these bounds without much difficulty. Indeed, (5.2) of [5, 
Corollary 5.2] is superseded by [11, Corollary 1], while (5.3) and (5.4) of [5, Corollary 5.2] follow from [1, 
Lemmas 3.2–3.4] and direct calculations.
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Φ(x, y) > x

log x

(
1 + c3

log x

)
− x

2 log2 √x

(
1 + c2

log
√
x

)2

+
√
x

2 log
√
x

+
∑

y<p≤√
x

π(x/p).

(2.3)
To handle the sum in (2.3), we appeal to (2.2) again to arrive at

∑
y<p≤√

x

π(x/p) ≥
∑

y<p≤√
x

(
x

p log(x/p) + c3x

p log2(x/p)

)
.

By partial summation we see that

∑
y<p≤√

x

1
p log(x/p) = 1

log x

u∫
2−

v

v − 1 dG(v) = 1
log y

⎛
⎝G(u)
u− 1 + 1

u

u∫
2−

G(v)
(v − 1)2 dv

⎞
⎠ .

From (2.1) it follows that

G(u)
u− 1 ≥ 1

u− 1

(
log u

2 − c1

log2 y

)
,

and
u∫

2−

G(v)
(v − 1)2 dv ≥

u∫
2

1
(v − 1)2

(
log v

2 − c1

log2 y

)
dv

= − 1
u− 1 log u

2 +
u∫

2

1
v(v − 1) dv −

c1

log2 y

(
1 − 1

u− 1

)

= − u

u− 1 log u

2 + log(u− 1) − c1

log2 y

(
1 − 1

u− 1

)
.

Hence
∑

y<p≤√
x

x

p log(x/p) ≥ x

log y

(
log(u− 1)

u
− 2c1

u log2 y

)

= x

log y

(
ω(u) − 2c1

u log2 y

)
− x

log x. (2.4)

Similarly, we have

∑
y<p≤√

x

1
p log2(x/p)

= 1
log2 x

u∫
2−

(
v

v − 1

)2

dG(v)

= 1
log2 x

⎛
⎝ G(u)u2

(u− 1)2 + 2
u∫

2−

vG(v)
(v − 1)3 dv

⎞
⎠ .
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By (2.1) we have

G(u)u2

(u− 1)2 ≥ u2

(u− 1)2

(
log u

2 − c1

log2 y

)
,

and
u∫

2−

vG(v)
(v − 1)3 dv ≥

u∫
2

v

(v − 1)3

(
log v

2 − c1

log2 y

)
dv.

Since
u∫

2

v

(v − 1)3 log v

2 dv = −
(

1
u− 1 + 1

2(u− 1)2

)
log u

2 +
u∫

2

(
1

v − 1 + 1
2(v − 1)2

)
dv

v

= − 2u− 1
2(u− 1)2 log u

2 + 1
2

u∫
2

(
1

(v − 1)2 + 1
v(v − 1)

)
dv

= − u2

2(u− 1)2 log u

2 + 1
2

(
log(u− 1) + 1 − 1

u− 1

)

and
u∫

2

v

(v − 1)3 dv = − 2u− 1
2(u− 1)2 + 3

2 ,

we have

∑
y<p≤√

x

x

p log2(x/p)
≥ x

log2 x

(
log(u− 1) + u− 2

u− 1 − 4c1
log2 y

)
. (2.5)

Inserting (2.4) and (2.5) into (2.3) yields

Δ(x, y) ≥ g(u) − 2c1
u log y + log y

uy3/2 − 1
u2

(
2 − c3 + 4c1c3

log2 y
+ 8c2

u log y + 8c22
u2 log2 y

)
,

where

g(u) := c3
u2

(
log(u− 1) + u− 2

u− 1

)
.

Using Mathematica we find that Δ−
3 > −0.301223 when y ≥ y1.

Now we proceed to bound Δ−
k for k ≥ 4 recursively when y ≥ y1. Let k ≥ 3 be 

arbitrary. It is easily seen that the following variant of Buchstab’s identity (1.2) holds 
for any z ∈ [y, x]:
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Φ(x, y) = Φ(x, z) +
∑

y<p≤z

Φ(x/p, p−), (2.6)

where p− < p is any real number sufficiently close to p. For 3 ≤ k ≤ u < k + 1 and 
y ≥ y1, we obtain by taking z = x1/3 that

Φ(x, y) = Φ
(
x, x1/3

)
+

∑
y<p≤x1/3

Φ(x/p, p−). (2.7)

We have already shown that

Φ
(
x, x1/3

)
≥ x

log x1/3

(
ω

(
log x

log x1/3

)
+ Δ−

3
log x1/3

)
= 3x

log y

(
ω(3)
u

+ 3Δ−
3

u2 log y

)
. (2.8)

Note that 2 < log(x/p)/ log(p−) < k. Thus, we have

Φ(x/p, p−) ≥ x

p log(p−)

(
ω

(
log(x/p)
log(p−)

)
+

Δ−
k

log(p−)

)
.

Since ω(u) is continuous on [1, ∞), it follows from (2.7) and (2.8) that

Φ(x, y) ≥ 3x
log y

(
ω(3)
u

+ 3Δ−
3

u2 log y

)
+

∑
y<p≤x1/3

x

p log p

(
ω

(
log x
log p − 1

)
+

Δ−
k

log p

)
. (2.9)

By partial summation we see that

∑
y<p≤x1/3

1
p log2 p

<

∞∫
y

1
t log2 t

dπ(t) = − π(y)
y log2 y

+
∞∫
y

log t + 2
t2 log3 t

π(t) dt,

which, by (2.2), is

< − 1
log3 y

(
1 + c3

log y

)
+

∞∫
y

log t + 2
t log4 t

(
1 + c2

log t

)
dt

= − 1
log3 y

(
1 + c3

log y

)
+ 1

2 log2 y
+ c2 + 2

3 log3 y
+ c2

2 log4 y

= 1
log2 y

(
1
2 +

(c2
3 − 1

) 1
log y +

(c2
2 − c3

) 1
log2 y

)

<
1

log2 y

(
1
2 +

(c2
3 − 1

) 1
log y

)
.

Hence
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∑
y<p≤x1/3

Δ−
k x

p log2 p
≥ Δ−

k x

log2 y

(
1
2 +

(c2
3 − 1

) 1
log y

)
. (2.10)

On the other hand, we have

∑
y<p≤x1/3

1
p log pω

(
log x
log p − 1

)

= 1
log x

u∫
3−

vω(v − 1) dG(v)

= 1
log x

⎛
⎝ u∫

3

ω(v − 1) dv +
u∫

3−

vω(v − 1) d
(
G(v) − log v

2

)⎞⎠ .

Observe that

u∫
3

ω(v − 1) dv = uω(u) − 3ω(3)

and that

u∫
3−

vω(v − 1) d
(
G(v) − log v

2

)
= uω(u− 1)

(
G(v) − log v

2

)
− 3ω(2)

(
G(3) − log 3

2

)

−
u∫

3−

(
G(v) − log v

2

)
d(vω(v − 1)).

By [13, (6.23), p. 562] and [13, Theorems III.5.7 & III.6.6], we have, for all v ≥ 3, that

d

dv
(vω(v − 1)) = ω(v − 2) + ω′(v − 1) ≥ 1

2 − ρ(v − 1) ≥ 1
2 − ρ(2) = log 2 − 1

2 ,

d

dv
(vω(v − 1)) ≤ 1 + ρ(v − 1) ≤ 1 + ρ(2) = 2 − log 2,

where ρ is the Dickman-de Bruijn function defined to be the unique continuous solution 
to the delay differential equation tρ′(t) + ρ(t − 1) = 0 for t ≥ 1, subject to the initial 
value condition ρ(t) = 1 for 0 ≤ t ≤ 1. Moreover, we have

lim
v→3−

d

dv
(vω(v − 1)) = lim

v→3−
(ω(v − 2) + ω′(v − 1)) = −1

4 .

It follows by (2.1) that
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u∫
3−

(
G(v) − log v

2

)
d(vω(v − 1)) ≤ c1

log2 y
(uω(u− 1) − 3ω(2)) .

Thus we have

u∫
3−

vω(v − 1) d
(
G(v) − log v

2

)
≥ −2c1uω(u− 1)

log2 y
≥ −2c1M0u

log2 y
,

where M0 = 0.5671432.... Hence we have shown that

∑
y<p≤x1/3

x

p log pω
(

log x
log p − 1

)
≥ x

log y

(
ω(u) − 3ω(3)

u
− 2c1M0

log2 y

)
. (2.11)

Combining (2.9), (2.10) and (2.11), we deduce that

Δ(x, y) ≥ 9Δ−
3

u2 +
Δ−

k

2 − 1
log y

(
2c1M0 −

(c2
3 − 1

)
Δ−

k

)

for k ≤ u < k + 1. Therefore, Δ−
k+1 ≥ min(Δ−

k , a
−
k ) for all k ≥ 3, where

a−k := 9Δ−
3

k2 +
Δ−

k

2 − 1
log y1

· max
(
2c1M0 −

(c2
3 − 1

)
Δ−

k , 0
)
.

Consequently, we have Δ−
4 > −0.451835 and Δ−

k > −0.480075 for all k ≥ 5.
Suppose now that 602 ≤ y ≤ y1. By [11, Theorem 20] we can replace (2.1) with

∣∣∣G(v) − log v

2

∣∣∣ ≤ d1√
y log y ,

where d1 = 2. Moreover, (2.2) remains true if we replace c2 and c3 by d2 = 1.2762 and 
d3 = 1, respectively, according to [5, Corollary 5.2]. With these changes, we run the same 
argument used to handle the case y ≥ y1 and get

Δ(x, y) > g(u) − 2d1

u
√
y

+ log y
uy3/2 − 1

u2

(
2 − d3 + 4d1d3√

y log y + 8d2

u log y + 8d2
2

u2 log2 y

)

when 2 ≤ u ≤ 3 and

Δ(x, y) ≥ 9Δ−
3

u2 +
Δ−

k

2 − 1
log y

(
2d1M0 log y

√
y

−
(
d2

3 − 1
)

Δ−
k

)

when 3 ≤ k ≤ u < k + 1, so that we can take

a−k = 9Δ−
3

2 +
Δ−

k − 1 · max
(

2d1M0 log y0√ −
(
d2 − 1

)
Δ−

k , 0
)
.

k 2 log y0 y0 3
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As a consequence, we have Δ−
3 > −0.563528, Δ−

4 > −0.887161 and Δ−
k > −0.955421 for 

all k ≥ 5. This completes the proof of the proposition. �
The next result provides a numerical lower bound for ω(u) on [3, ∞).

Lemma 2.2. We have ω(u) > 0.549307 for all u ≥ 3.

Proof. Consider first the case u ∈ [3, 4]. Since (tω(t))′ = ω(t − 1) for t ≥ 2 and ω(t) =
(log(t − 1) + 1)/t for t ∈ [2, 3], we have

ω(u) = 1
u

⎛
⎝log 2 + 1 +

u∫
3

log(t− 2) + 1
t− 1 dt

⎞
⎠

for u ∈ [3, 4]. Note that uω′(u) = ω(u − 1) − ω(u) = S(u)/u, where

S(u) := u(log(u− 2) + 1)
u− 1 − log 2 − 1 −

u∫
3

log(t− 2) + 1
t− 1 dt.

Since

S′(u) = 1
u− 1

(
log(u− 2) + 1 + u

u− 2 − u(log(u− 2) + 1)
u− 1 − (log(u− 2) + 1)

)

= u(1 − (u− 2) log(u− 2))
(u− 2)(u− 1)2 ,

we know that S(u) is strictly increasing on [3, u1] and strictly decreasing on [u1, 4], 
where u1 = 3.7632228... is the unique solution to the equation (u − 2) log(u − 2) = 1. 
But S(3) = 1/2 − log 2 < 0 and

S(4) = log 2 + 1
3 −

4∫
3

log(t− 2) + 1
t− 1 dt > 0.

It follows that S(u) has a unique zero u2 ∈ [3, 4]. The numerical value of u2 is given 
by u2 = 3.4697488..., according to Mathematica. Hence S(u) < 0 for u ∈ [3, u2) and 
S(u) > 0 for u ∈ (u2, 4]. The same is true for ω′(u), which implies that ω(u) is strictly 
decreasing on [3, u2] and strictly increasing on [u2, 4]. Thus, ω(u) ≥ ω(u2) = 0.5608228...
for u ∈ [3, 4].

Consider now the case u ∈ [4, ∞). It is known [8] that ω(t) satisfies

|ω(t) − e−γ | ≤ ρ(t− 1)

t
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for all t ≥ 1. Since ρ(t) is strictly decreasing on [4, ∞), we have ω(u) ≥ e−γ − ρ(3)/4
for all u ≥ 4. To find the value of ρ(3), we use tρ′(t) + ρ(t − 1) = 0 for t ≥ 1 and 
ρ(t) = 1 − log t for t ∈ [1, 2] to obtain

ρ(u) = 1 − log 2 −
u∫

2

1 − log(t− 1)
t

dt

for u ∈ [2, 3]. It follows that

ω(u) ≥ e−γ − 1
4

⎛
⎝1 − log 2 −

3∫
2

1 − log(t− 1)
t

dt

⎞
⎠ = 0.5493073...

for all u ≥ 4. We have therefore shown that ω(u) > 0.549307 for all u ≥ 3. �
We are now ready to prove the following clean lower bound for Φ(x, y) that we alluded 

to.

Theorem 2.3. We have Φ(x, y) > 0.4x/ log y uniformly for all 7 ≤ y ≤ x2/3.

Proof. In the range max(7, x2/5) ≤ y ≤ x2/3, we have trivially Φ(x, y) ≥ π(x) −π(y) +1. 
By [5, Corollary 5.2] we have

π(x) − π(y) ≥ x

log x

(
1 + 1

log x

)
− y

log y

(
1 + 1.2762

log y

)

=
(

1
u

(
1 + 1

log x

)
− y

x

(
1 + 1.2762u

log x

))
x

log y

>

(
2
5

(
1 + 1

log x

)
− 1

x1/3

(
1 + 3.1905

log x

))
x

log y > 0.4 x

log y

whenever x ≥ 41,217. Furthermore, we have verified Φ(x, y) > 0.4x/ log y for 
max(7, x2/5) ≤ y ≤ x2/3 with x ≤ 41,217 using Mathematica. Hence, Φ(x, y) >
0.4x/ log y holds in the range max(7, x2/5) ≤ y ≤ x2/3.

Consider now the case max(x1/3, 7) ≤ y ≤ x2/5. Following the proof of Proposition 2.1, 
we have

Φ(x, y) = π(x) − π(y) + 1 +
∑

y<p≤√
x

(π(x/p) − π(p) + 1)

= π(x) −M(x, y) +
∑

y<p≤x1/2

π(x/p), (2.12)

where
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M(x, y) := 1
2π

(√
x
)2 − 1

2π
(√

x
)
− 1

2π(y)2 + 3
2π(y) − 1.

To handle the sum in (2.12), we appeal to Theorem 5 and its corollary from [11] to arrive 
at

G(v) − log v

2 > − 1
2 log2 √x

− 1
log2 y

≥ − 33
25 log2 y

in the range max(x1/3, 7) ≤ y ≤ x2/5. By [11, Corollary 1] we have

∑
y<p≤x1/2

π(x/p) > x
∑

y<p≤x1/2

1
p log(x/p) = x

log x

u∫
2−

v

v − 1 dG(v),

provided that x ≥ 289. The right-hand side of the above can be estimated in the same 
way as in the proof of Proposition 2.1, so we obtain

∑
y<p≤√

x

π(x/p) > x

log y

(
ω(u) − 66

25u log2 y

)
− x

log x.

On the other hand, we see by [5, Corollary 5.2] and [11, Corollary 2] that

π(x) −M(x, y) > π(x) − 1
2π

(√
x
)2 ≥ x

log x

(
1 + 1

log x

)
− 25x

8 log2 x
= x

log x − 17x
8 log2 x

for x ≥ 1142. Collecting the estimates above and using the inequality ω(u) ≥ ω(5/2) =
2(ln(3/2) + 1)/5 for u ∈ [5/2, 3], we find that

Φ(x, y) > ω(5/2)x
log y − 17x

8 log2 x
− 66x

25u log3 y
≥ ω(5/2)x

log y − 17x
50 log2 y

− 132x
125 log3 y

> 0.4 x

log y

for all max(46, x1/3) ≤ y ≤ x2/5. For x1/3 ≤ y ≤ x2/5 with 7 ≤ y ≤ 46, we have verified 
the inequality Φ(x, y) > 0.4x/ log y directly through numerical computation.

Next, we consider the range 7 ≤ y < x1/3. By Proposition 2.1 and Lemma 2.2 we have

Φ(x, y) > x

log y

(
0.549307 − 0.955421

log y

)
> 0.4 x

log y ,

provided that y ≥ 602. To deal with the range 7 ≤ y ≤ min(x1/3, 602), we follow the 
inclusion-exclusion technique used in [7, Section 3]. For any integer n ≥ 1, let ν(n) denote 
the number of distinct prime factors of n. We start by “pre-sieving” with the primes 2, 
3, and 5: for any x ≥ 1 the number of integers n ≤ x with gcd(n, 30) = 1 is (4/15)x + rx, 
where |rx| ≤ 14/15. Let P5(y) be the product of the primes in (5, y]. Then we have by 
the Bonferroni inequalities that
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Φ(x, y) ≥
∑

d|P5(y)
ν(d)≤3

μ(d)
(

4
15 · x

d
+ rx/d

)
≥ a(y)x− b(y),

where

a(y) := 4
15

∑
d|P5(y)
ν(d)≤3

μ(d)
d

= 4
15

3∑
j=0

(−1)j
∑

d|P5(y)
ν(d)=j

1
d
,

b(y) := 14
15

3∑
j=0

(
π(y) − 3

j

)
.

By Newton’s identities, the inner sum in the definition of a(y) can be represented in terms 
of the power sums of 1/p over all primes 5 < p ≤ y. Thus, we have Φ(x, y) > 0.4x/ log y
whenever a(y) > 0.4/ log y and x > b(y)/(a(y) − 0.4/ log y). Using Mathematica, we find 
that the inequality Φ(x, y) > 0.4x/ log y holds for 7 ≤ y ≤ 602 and x ≥ 13,160,748. 
Finally, we have verified the inequality Φ(x, y) > 0.4x/ log y directly for 7 ≤ y ≤ x1/3

with x ≤ 13,160,748 by numerical calculations, completing the proof of our theorem. �
Remark 2.1. Note that for y ∈ [5, 7) we have

Φ(x, y) ≥ 4
15x− 14

15 > 0.4 x

log 5 ≥ 0.4 x

log y ,

provided that x ≥ 52. Combined with Theorem 2.3 and numerical examination of the 
case 11 ≤ x ≤ 52, this implies that the inequality Φ(x, y) > 0.4x/ log y holds in the 
slightly larger range 5 ≤ y ≤ x2/3 if one assumes x ≥ 41.

3. An explicit version of de Bruijn’s estimate

To prove Theorem 1.1, we shall first develop an explicit version of (1.6) with a general 
R(y), following [4], where R(y) is a positive decreasing function satisfying the same 
conditions described in the introduction. Suppose that y0 ≥ 3. For each z ≥ 2, put

Q(z) :=
∏
p≤z

(
1 − 1

p

)
.

We start by estimating Q(y) for y ≥ y0. Using a Stieltjes integral, we may write

log Q(z)
Q(y) =

z∫
y

log
(
1 − t−1) d li(y) +

z∫
y

log
(
1 − t−1) d(π(y) − li(t)), (3.1)

where z ≥ y ≥ y0. The first integral on the right-hand side of the above is equal to
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z∫
y

log
(
1 − t−1) dt

log t = − log log z
log y +

z∫
y

(
t−1 + log

(
1 − t−1)) dt

log t .

Since

− 1
2t(t− 1) < t−1 + log

(
1 − t−1) < 0

for all t ≥ y0, we have

−1
2

∞∫
y

dt

t(t− 1) log t <

z∫
y

(
t−1 + log

(
1 − t−1)) dt

log t < 0.

But a change of variable shows that

∞∫
y

dt

t(t− 1) log t =
∞∫
1

dt

t(yt − 1) ≤ 1
y − 1

∞∫
1

dt

t2
= 1

y − 1 ,

where we have used the inequality yt − 1 ≥ (y− 1)t for t ≥ 1 and y ≥ y0. It follows that

− 1
2(y − 1) ≤

z∫
y

log
(
1 − t−1) d li(y) + log log z

log y < 0. (3.2)

Now we estimate the second integral on the right-hand side of (3.1). By (1.4) and partial 
integration we have

∣∣∣∣∣∣
z∫

y

log
(
1 − t−1) d(π(y) − li(t))

∣∣∣∣∣∣
≤ log

(
1 − y−1)−1 y

log yR(y) + log
(
1 − z−1)−1 z

log zR(z) +
z∫

y

|π(t) − li(t)|
t(t− 1) dt.

Using (1.5) we see that

z∫
y

|π(t) − li(t)|
t(t− 1) dt ≤ C0(y0)y0

y0 − 1 R(y).

It is clear that the function

log
(
1 − t−1)−1 t

log t = 1
log t

∞∑ t−n

n + 1

n=0
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is strictly decreasing for t ∈ (1, ∞). Since R(t) is decreasing on [y0, ∞), we find that

∣∣∣∣∣∣
z∫

y

log
(
1 − t−1) d(π(y) − li(t))

∣∣∣∣∣∣ ≤
(

2 log
(
1 − y−1

0
)−1 y0

log y0
+ C0(y0)y0

y0 − 1

)
R(y).

Combining this inequality with (3.1) and (3.2) yields

−C2(y0)R(y) ≤ log Q(z)
Q(y) + log log z

log y ≤ C1(y0)R(y) (3.3)

for z ≥ y ≥ y0, where

C1(y0) = 2 log
(
1 − y−1

0
)−1 y0

log y0
+ C0(y0)y0

y0 − 1 ,

C2(y0) = C1(y0) + sup
t≥y0

1
2(t− 1)R(t) .

Exponentiating (3.3) we obtain

−C4(y0)R(y) ≤ Q(z) log z
Q(y) log y − 1 ≤ C3(y0)R(y) (3.4)

for z ≥ y ≥ y0, where

C3(y0) = sup
t≥y0

exp(C1(y0)R(t)) − 1
R(t) = exp(C1(y0)R(y0)) − 1

R(y0)
,

C4(y0) = sup
t≥y0

1 − exp(−C2(y0)R(t))
R(t) = C2(y0).

As a consequence, we have by letting z → ∞ in (3.4) and using the fact that Q(z) log z →
e−γ as z → ∞, that

eγ log y(1 − C4(y0)R(y)) ≤ 1
Q(y) ≤ eγ log y(1 + C3(y0)R(y)). (3.5)

Similarly, we derive from (3.3) that

e−γ

log y (1 − C6(y0)R(y)) ≤ Q(y) ≤ e−γ

log y (1 + C5(y0)R(y)) (3.6)

for y ≥ y0, where
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C5(y0) = sup
t≥y0

exp(C2(y0)R(t)) − 1
R(t) = exp(C2(y0)R(y0)) − 1

R(y0)
,

C6(y0) = sup
t≥y0

1 − exp(−C1(y0)R(t))
R(t) = C1(y0).

For x ≥ y ≥ 2, we define

ψ(x, y) := Φ(x, y)
xQ(y) .

We then need to estimate η(x, y) = ψ(x, y) − λ(x, y), where λ(x, y) := eγμy(u) log y. For 
1 ≤ u ≤ 2 this can be done straightforward. Indeed, we have Φ(x, y) = π(x) − π(y) + 1
and ω(u) = 1/u when 1 ≤ u ≤ 2, so that

η(x, y) = π(x) − π(y) + 1
xQ(y) − eγ log y

u∫
1

t−1yt−u dt.

Note that∣∣∣∣∣∣π(x) − π(y) − x

u∫
1

t−1yt−u dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣π(x) − π(y) −
x∫

y

dt

log t

∣∣∣∣∣∣ ≤
(

x

log x + y

log y

)
R(y).

From (3.5) it follows that |η(x, y)| ≤ eγαy(u)R(y) for y ≥ y0 and u ∈ [1, 2], where

αy(u) := log y
yuR(y)+C3(y0)

⎛
⎝ log y

yu
+ log y

u∫
1

t−1yt−u dt

⎞
⎠+(1+C3(y0)R(y))

(
1
u

+ y1−u

)
.

Integration by parts enables us to write

log y
u∫

1

t−1yt−u dt = 1
u
− y1−u +

u∫
1

t−2yt−u dt

for y ≥ y0. Hence |η(x, y)| ≤ eγη1(y)R(y) for y ≥ y0 and u ∈ [1, 2], where

η1(y) := sup
t≥y

log t
tR(t) + max

u∈[1,2]

(
C3(y0)Iy(u) + (1 + C3(y0)R(y))

(
1
u

+ y1−u

))
(3.7)

with

Iy(u) := 1
u

+
u∫
t−2yt−u dt.
1
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We remark that Iy(u) is strictly decreasing on [1, 2] and hence satisfies Iy(u) < 1 for 
u ∈ (1, 2], since its derivative is

I ′y(u) = −
u∫

1

t−2yt−u log y dt < 0.

Thus, (3.7) simplifies to

η1(y) = sup
t≥y

log t
tR(t) + C3(y0) + 2(1 + C3(y0)R(y)). (3.8)

Suppose now that y ≥ y0 and u ≥ 2. From (2.6) it follows that

ψ(x, y) = ψ(x, z)Q(z)
Q(y) +

∑
y<p≤z

ψ(x/p, p−) · 1
p

∏
y<q<p

(
1 − 1

q

)
, (3.9)

where z ≥ y ≥ y0. Put h := log z/ log y ≥ 1 and

Hy(v) :=
∑

y<p≤yv

1
p

∏
y<q<p

(
1 − 1

q

)
(3.10)

for v ≥ 1. Then we have Hy(v) = 1 − Q(yv)/Q(y). By partial summation, we see that 
(3.9) becomes

ψ(x, y) = ψ(yu, yh)(1 −Hy(h)) +
h∫

1

ψ(yu−v, (yv)−) dHy(v). (3.11)

By (3.4) we have

|Hy(v) − 1 + v−1| ≤ C7(y0)R(y),

where C7(y0) := max(C3(y0), C4(y0)). Thus, one can think of 1 − v−1 as a smooth 
approximation to Hy(v). Since we also expect λ(x, y) to be a smooth approximation to 
ψ(x, y), in view of (3.11) it is reasonable to expect

E1(h; y, u) := λ(yu, y) − λ(yu, yh)h−1 −
h∫

1

λ(yu−v, yv)v−2 dv

to be small in size as a function of y. This can be easily verified when 1 ≤ h ≤ u/2. 
Following de Bruijn [4], we have

∂
E1(h; y, u) = −h−1 · ∂

λ(yu, yh) + h−2λ(yu, y) − h−2λ(yu−h, yh). (3.12)

∂h ∂h
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Since

λ(yu, yh)
eγ log y = h

u/h∫
1

yht−uω(t) dt,

we find

∂

∂h

(
λ(yu, yh)
eγ log y

)
=

u/h∫
1

yht−uω(t) dt + h

⎛
⎜⎝log y

u/h∫
1

yht−u(tω(t)) dt− uh−2ω(uh−1)

⎞
⎟⎠ .

Recall that (tω(t))′ = ω(t − 1) for t ∈ R with the obvious extension ω(t) = 0 for t < 1. 
It follows that

log y
u/h∫
1

yht−u(tω(t)) dt = h−1yht−u(tω(t))
∣∣∣∣
u/h

1
− h−1

u/h∫
1

yht−uω(t− 1) dt

= uh−2ω(uh−1) − h−1yh−u − h−1yh
u/h−1∫

1

yht−uω(t) dt

= uh−2ω(uh−1) − h−1yh−u −
(
h2eγ log y

)−1
λ(yu−h, yh).

Hence we have

∂

∂h
λ(yu, yh) = eγ log y

⎛
⎜⎝

u/h∫
1

yht−uω(t) dt− yh−u

⎞
⎟⎠− h−1λ(yu−h, yh)

= h−1λ(yu, yh) − eγyh−u log y − h−1λ(yu−h, yh).

Inserting this in (3.12) yields

∂

∂h
E1(h; y, u) = h−1eγyh−u log y.

Integrating both sides with respect to h and using the initial value condition E1(1; y, u) =
0, we obtain

E1(h; y, u) = eγ log y
h∫

1

t−1yt−u dt < eγyh−u. (3.13)

In what follows, we shall always suppose that 1 ≤ h ≤ u/2. Following de Bruijn [4], 
we proceed to show that
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E3(h; y, u) := λ(yu, y) − λ(yu, yh)(1 −H(h)) −
h∫

1

λ(yu−v, yv) dH(h)

is small in size as a function of y. This is intuitive, because

λ(yu, yh)h−1 −
h∫

1

λ(yu−v, yv)v−2 dv (3.14)

is a good approximation to λ(yu, y), as we have already demonstrated. Consequently, 
the expression (3.14) can be thought of as a smooth approximation to

λ(yu, yh)(1 −H(h)) −
h∫

1

λ(yu−v, yv) dH(h).

Moreover, we have by (3.11) that

η(x, y) = η(yu, yh)(1 −Hy(h)) +
h∫

1

η(yu−v, (yv)−) dHy(v) − E3(h; y, u), (3.15)

which will later be used to estimate η(x, y). To estimate E3(h; y, u), let us write 
E3(h; y, u) = E1(h; y, u) + E2(h; y, u), where

E2(h; y, u) := −
h∫

1

λ(yu−v, yv) d
(
H(v) − 1 + v−1) + (H(h) − 1 + h−1)λ(yu, yh).

Then we expect E2(h; y, u) to be small in size as a function of y. Using (3.10) and the 
observation that H(1) = 0, we have

|E2(h; y, u)| ≤

⎛
⎝∣∣λ(yu, yh) − λ(yu−h, yh)

∣∣ +
h∫

1

∣∣∣∣ ∂∂vλ(yu−v, yv)
∣∣∣∣ dv

⎞
⎠C7(y0)R(y).

(3.16)
Note that

λ(yu, yh) − λ(yu−h, yh)
heγ log y =

u/h∫
1

yht−uω(t) dt−
u/h∫
2

yht−uω(t− 1) dt

=
2∫
yht−uω(t) dt +

u/h∫
yht−u(ω(t) − ω(t− 1)) dt
1 2
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=
2∫

1

t−1yht−u dt−
u/h∫
2

yht−utω′(t) dt.

By Theorems III.5.7 and III.6.6 in [13] we have

|ω′(t)| ≤ ρ(t) ≤ 1
Γ(t + 1) (3.17)

for all t ≥ 1. It follows that

∣∣λ(yu, yh) − λ(yu−h, yh)
∣∣ ≤ heγ log y

⎛
⎜⎝

2∫
1

t−1yht−u dt +
u/h∫
2

yht−utρ(t) dt

⎞
⎟⎠ . (3.18)

This inequality will later be used in conjunction with the formulas

h log y
2∫

1

t−1yht−u dt = y2h−u

2 − yh−u +
2∫

1

t−2yht−u dt (3.19)

and

h log y
u/h∫
2

yht−utρ(t) dt = uh−1ρ(uh−1) − 2ρ(2)y2h−u −
u/h∫
2

yht−u(tρ(t))′ dt

≤ uh−1ρ(uh−1) − 2ρ(2)y2h−u +
u/h∫
2

yht−uρ(t− 1) dt. (3.20)

On the other hand, we have

λ(yu−v, yv)
eγ log y = v

u/v∫
2

yvt−uω(t− 1) dt,

which implies that

∂

∂v

(
λ(yu−v, yv)
eγ log y

)
=

u/v∫
2

yvt−u(1 + tv log y)ω(t− 1) dt− uv−1ω(uv−1 − 1).

By partial integration, the right side of the above is easily seen to be

−2y2v−u −
u/v∫

yvt−utω′(t− 1) dt.

2
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Hence, we arrive at

h∫
1

∣∣∣∣ ∂∂vλ(yu−v, yv)
∣∣∣∣ dv ≤ eγ log y

⎛
⎜⎝2

h∫
1

y2v−u dv +
h∫

1

u/v∫
2

yvt−ut|ω′(t− 1)| dtdv

⎞
⎟⎠ .

Furthermore, we have by Fubini’s theorem that

h∫
1

u/v∫
2

yvt−ut|ω′(t−1)| dtdv =
u/h∫
2

h∫
1

yvt−ut|ω′(t−1)| dv dt+
u∫

u/h

u/t∫
1

yvt−ut|ω′(t−1)| dv dt,

the right side of which is easily seen to be

1
log y

⎛
⎜⎝

u/h∫
2

yht−u|ω′(t− 1)| dt +
u∫

u/h

|ω′(t− 1)| dt−
u∫

2

yt−u|ω′(t− 1)| dt

⎞
⎟⎠ .

It follows that

h∫
1

∣∣∣∣ ∂∂vλ(yu−v, yv)
∣∣∣∣ dv < eγ

⎛
⎜⎝y2h−u +

u/h∫
2

yht−u|ω′(t− 1)| dt +
u∫

u/h

|ω′(t− 1)| dt

⎞
⎟⎠ .

(3.21)
This estimate together with (3.18) will lead us to a good estimate for E2(h; y, u).

Now we derive estimates for E3(h; y, u) that suit our needs. Suppose that k ≤ u < k+1
and take h = hk = u/k, where k ≥ 2 is a positive integer. We first consider the case 
k = 2. In view of (3.19), we see that (3.18) simplifies to

∣∣λ (
yu, yh2

)
− λ

(
yu−h2 , yh2

)∣∣ < eγ

⎛
⎝1

2 +
2∫

1

t−2yt−2
0 dt

⎞
⎠ = eγIy0(2)

for y ≥ y0. By (3.21) we have

h2∫
1

∣∣∣∣ ∂∂vλ(yu−v, yv)
∣∣∣∣ dv ≤ eγ

⎛
⎝1 +

3∫
2

|ω′(t− 1)| dt

⎞
⎠ = 3eγ

2 ,

since ω′(t) = −1/t2 for t ∈ [1, 2). Combining these estimates with (3.13) and (3.16), we 
obtain E3(h2; y, u) ≤ eγξ2(y0)R(y) for y ≥ y0 and 2 ≤ u < 3, where

ξ2(y0) := max 1 + C7(y0)
(
Iy0(2) + 3

)
.

t≥y0 tR(t) 2
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Now we handle the case k ≥ 3. From (3.17)–(3.20) it follows that

∣∣λ (
yu, yhk

)
− λ

(
yu−hk , yhk

)∣∣ < eγ

⎛
⎝ 1

Γ(k) +
(

2 log 2 − 3
2

)
y2−k +

2∫
1

t−2yt−k dt

+
3∫

2

yt−k(1 − log(t− 1)) dt +
k∫

3

yt−k dt

Γ(t)

⎞
⎠ ,

where we have used the fact that ρ(t) = 1 − log t for t ∈ [1, 2]. By (3.17) and (3.21) we 
have

hk∫
1

∣∣∣∣ ∂∂vλ(yu−v, yv)
∣∣∣∣ dv ≤ eγ

⎛
⎝y2−k +

3∫
2

yt−k dt

(t− 1)2 +
k∫

3

yt−k dt

Γ(t) +
k+1∫
k

dt

Γ(t)

⎞
⎠ .

Together with (3.13) and (3.16), these inequalities imply that E3(hk; y, u) ≤ eγξk(y0)R(y)
for y ≥ y0 and 3 ≤ k ≤ u < k + 1, where

ξk(y0) :=
(

max
t≥y0

1
tR(t)

)
y2−k
0 + C7(y0)

⎛
⎝ 1

(k − 1)! +
k+1∫
k

dt

Γ(t) +
(

2 log 2 − 1
2

)
y2−k
0

+
2∫

1

t−2yt−k
0 dt +

3∫
2

yt−k
0

(
1 − log(t− 1) + 1

(t− 1)2

)
dt + 2

k∫
3

yt−k
0

dt

Γ(t)

⎞
⎠ .

As a direct corollary, we obtain

∞∑
k=2

ξk(y0) = y0

y0 − 1 max
t≥y0

1
tR(t) + C7(y0)

⎛
⎝e− 1

2 +
∞∫
3

dt

Γ(t) + 1
y0 − 1

⎛
⎝2 log 2 − 1

+y0Iy0(2) +
3∫

2

yt−2
0

(
1 − log(t− 1) + 1

(t− 1)2

)
dt + 2

∞∫
3

y
{t}
0

dt

Γ(t)

⎞
⎠
⎞
⎠ ,

where we have applied partial summation to derive

∞∑
k=3

k∫
3

yt−k
0

dt

Γ(t) =
( ∞∑

k=3

y−k
0

) ∞∫
3

yt0
dt

Γ(t) −
∞∫
3

⎛
⎝ ∑

3≤k≤t

y−k
0

⎞
⎠ yt0

dt

Γ(t)

= y−3
0

1 − y−1
0

∞∫
yt0

dt

Γ(t) −
∞∫
yt−3
0 (1 − y

−	t
+2
0 )

1 − y−1
0

· dt

Γ(t)

3 3
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= 1
y0 − 1

∞∫
3

y
{t}
0

dt

Γ(t) .

For computational purposes, we can transform the last integral above by observing that

∞∫
3

y
{t}
0

dt

Γ(t) =
1∫

0

( ∞∑
n=0

1
(t + 2) · · · (t + 2 + n)

)
yt0

dt

Γ(t + 2) .

Let

γ(s, z) :=
z∫

0

vs−1e−v dv

be the lower incomplete gamma function, where s ∈ C with 
(s) > 0 and z ≥ 0. It is 
well known that

γ(s, z) = zse−z
∞∑

n=0

zn

s(s + 1) · · · (s + n) ,

from which it follows that

∞∑
n=0

1
(t + 2) · · · (t + 2 + n) = γ(t + 2, 1)e.

Thus we obtain

∞∑
k=2

ξk(y0) = y0

y0 − 1 max
t≥y0

1
tR(t) + C7(y0)

⎛
⎝e− 1

2 +
∞∫
3

dt

Γ(t)

+ 1
y0 − 1

⎛
⎝2 log 2 − 1 + y0Iy0(2) +

3∫
2

yt−2
0

(
1 − log(t− 1) + 1

(t− 1)2

)
dt

+2e
1∫

0

yt0
γ(t + 2, 1)
Γ(t + 2) dt

⎞
⎠
⎞
⎠ .

(3.22)
In Mathematica, the function γ(t + 2, 1) can be evaluated by “Gamma[t+2,0,1]”.

Finally, we are ready to estimate η(x, y). Let

ηk(y) := 1
eγR(y) sup

u∈[k,k+1)
|η(tu, t)|
t≥y
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for k ≥ 1 and y ≥ y0, where the value of η1(y) is provided by (3.8). Using (3.15) and the 
estimates for E3(hk; y, u) with y ≥ y0 and 2 ≤ k ≤ u < k + 1, we find

ηk(y) ≤ ηk−1(y) + ξk(y0)

for all k ≥ 2 and y ≥ y0, from which we derive

ηk(y) ≤ η1(y) +
k∑

�=2

ξ�(y0)

for all k ≥ 1 and y ≥ y0. Since η1(y) is decreasing on [y0, ∞), we have therefore shown 
that

|η(x, y)| ≤ eγ

(
η1(y0) +

∞∑
k=2

ξk(y0)
)
R(y) (3.23)

for all y ≥ y0, where the infinite sum can be evaluated using (3.22). To derive an explicit 
version of de Bruijn’s result (1.6), we observe that (3.6), (3.23) and [11, Theorem 23]
imply that Q(y)|η(x, y)| ≤ C8(y0)R(y)/ log y for all y ≥ y0, where

C8(y0) := β(y0)
(
η1(y0) +

∞∑
k=2

ξk(y0)
)

with

β(y0) :=
{

1, if 3 ≤ y0 < 108,

exp(C2(y0)R(y0)), if y0 ≥ 108.

Hence, it follows that
∣∣∣∣∣∣Φ(x, y) − μy(u)eγx log y

∏
p≤y

(
1 − 1

p

)∣∣∣∣∣∣ <
C8(y0)xR(y)

log y (3.24)

for all y ≥ y0.

4. Deduction of Theorem 1.1 and Corollary 1.2

Now we apply (3.24) to obtain explicit estimates for Φ(x, y) with specific choices of 
R(y). Unconditionally, it has been shown [9, Corollary 2] that

|π(z) − li(z)| ≤ 0.2593 z

(log z)3/4
exp

(
−
√

log z
6.315

)
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for all z ≥ 229. With y0 ≥ 229, the function

R(z) = 0.2593(log z)1/4 exp
(
−
√

log z
6.315

)

is strictly decreasing on [y0, ∞) and satisfies (1.4) and (1.5) with

C0(y0) = 2
√

6.315
log y0

,

since

∞∫
z

1
t(log t)3/4

exp
(
−
√

log t
6.315

)
dt = 2

∞∫
√

log z

1√
t
exp

(
− t√

6.315

)
dt

<
2

(log z)1/4

∞∫
√

log z

exp
(
− t√

6.315

)
dt

= 2
√

6.315
(log z)1/4

exp
(
−
√

log z
6.315

)

for z ≥ y0. Numerical computation using Mathematica allows us to conclude that
∣∣∣∣∣∣Φ(x, y) − μy(u)eγx log y

∏
p≤y

(
1 − 1

p

)∣∣∣∣∣∣ < 4.403611 x

(log y)3/4
exp

(
−
√

log y
6.315

)
(4.1)

for all x ≥ y ≥ 229. Suppose now that 2 ≤ y < 229. Using the inequalities Φ(x, y) <
x/ log y [6, Theorem], 

∏
p≤y(1 − 1/p) < e−γ/ log y [11, Theorem 23] and 0 ≤ μy(u) <

1/ log y, we have
∣∣∣∣∣∣Φ(x, y) − μy(u)eγx log y

∏
p≤y

(
1 − 1

p

)∣∣∣∣∣∣ <
2x

log y < 4.403611 x

(log y)3/4
exp

(
−
√

log y
6.315

)

for all 2 ≤ y < 229. Combining this with (4.1) proves the first half of Theorem 1.1.
Under the assumption of the Riemann Hypothesis, it is known [12, Corollary 1] that

|π(z) − li(z)| < 1
8π

√
z log z

for all z ≥ 2657. With y0 = 2657 and

R(z) = log2 z√ ,

8π z
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Table 1
Numerical Constants.

constants unconditional estimates conditional estimates
y0 229 108 2657 108

R(y0) .156576 .097363 .047992 .001351
C0(y0) 2.156096 1.171019 .317985 .120362
C1(y0) 2.534430 1.279593 .571800 .228936
C2(y0) 2.548436 1.279593 .575723 .228940
C3(y0) 3.110976 1.362717 .579718 .228971
C4(y0) 2.548436 1.279593 .575723 .228940
C5(y0) 3.131827 1.362717 .583750 .228975
C6(y0) 2.534430 1.279593 .571800 .228936
C7(y0) 3.110976 1.362717 .579718 .228971
C8(y0) 16.982691 9.079975 4.638553 2.967998
η1(y0) 6.236726 3.628074 2.697198 2.229726∑∞

k=2 ξk(y0) 10.745960 4.388310 1.941356 .737355

we have

∞∫
z

|π(t) − li(t)|
t2

dt ≤ 1
8π

∞∫
z

log t
t3/2

dt = log z + 2
4π

√
z

≤ C0(y0)R(z)

for z ≥ y0, where

C0(y0) = 2(log y0 + 2)
log2 y0

.

Therefore, we conclude by (3.24) and numerical calculations that
∣∣∣∣∣∣Φ(x, y) − μy(u)eγx log y

∏
p≤y

(
1 − 1

p

)∣∣∣∣∣∣ < 0.184563x log y
√
y

(4.2)

for all x ≥ y ≥ 2657. The values of relevant constants are recorded in Table 1.
To complete the proof of the second half of Theorem 1.1, it remains to deal with the 

case 11 ≤ y ≤ 2657. For simplicity of notation we set

D(x, y) := Φ(x, y) − μy(u)eγx log y
∏
p≤y

(
1 − 1

p

)
.

Using Mathematica we find that

M := max
11≤z≤2657

li(z) − π(z)√
z log z

< 0.259141,

m := min
11≤z≤2657

eγ log z
∏
p≤z

(
1 − 1

p

)
> 0.876248.

If 
√
x ≤ y < x, then
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Φ(x, y) = μy(u)x + (π(x) − li(x)) − (π(y) − li(y)) + 1.

Note that x ≤ y2 < 108. Since π(z) < li(z) for 2 ≤ z ≤ 108 by [11, Theorem 16] and

∏
p≤z

(
1 − 1

p

)
<

e−γ

log z

for 0 < z ≤ 108 by [11, Theorem 23], we have

|D(x, y)| < (1 −m)
(
1 − y−1) x

log y + M
√
x log x + 1

≤
(

(1 −m)
(
1 − y−1) + M

log2 y
√
y

+ log y
y

)
x

log y , (4.3)

where we have used the fact that log x/
√
x is strictly decreasing on [e2, ∞). Numerical 

computation shows that the right side of (4.3) is < 0.449774x log y/√y for 11 ≤ y ≤ 2657. 
Suppose now that 11 ≤ y ≤ √

x. By [7, Theorem 1], Theorem 2.3 and [11, Theorem 23]
we have, for 11 ≤ y ≤ 2657,

D(x, y) ≤
(
0.6 − m

2
(
1 − y−1)) x

log y < 0.449774x log y
√
y

,

D(x, y) > (0.4 −M0)
x

log y > −0.449774x log y
√
y

.

This settles the case 11 ≤ y ≤ 2657 and completes the proof of Theorem 1.1.
The proof of Corollary 1.2 is similar, and we shall only sketch it. When y ≥ y0, where 

y0 = 229 for the unconditional estimate and y0 = 2657 for the conditional estimate, we 
have by the triangle inequality that

|Φ(x, y) − μy(u)x| < |D(x, y)| +

∣∣∣∣∣∣1 − eγ log y
∏
p≤y

(
1 − 1

p

)∣∣∣∣∣∣
x

log y .

Then we bound |D(x, y)| using the values of C8(y0) listed in the table above. To estimate 
the second term, we use (3.6) when y ≥ 108 and the inequality

m(y) < eγ log y
∏
p≤y

(
1 − 1

p

)
< 1

when y0 ≤ y ≤ 108, where m(y) is given by

m(y) :=

⎧⎪⎪⎨
⎪⎪⎩

0.983296, if 229 ≤ y ≤ 2657,
0.996426, if 2657 ≤ y < 210,000,
0.999643, if 210,000 ≤ y ≤ 108,
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according to [11, Theorem 23] and Mathematica. This leads to the asserted bounds for 
y ≥ y0. Suppose now that y ≤ y0. In this case, the proof of the unconditional bound 
is exactly the same as that of the unconditional bound in Theorem 1.1. As for the 
conditional bound, we argue in the same way as in the proof of Theorem 1.1 to get

|Φ(x, y) − μy(u)x| ≤
(
M

log2 y
√
y

+ log y
y

)
x

log y

when 
√
x ≤ y < x and

|Φ(x, y) − μy(u)x| ≤
(

0.6 − 1
2
(
1 − y−1)) x

log y ,

|Φ(x, y) − μy(u)x| > (0.4 −M0)
x

log y ,

when 11 ≤ y ≤ √
x. Together, these inequalities yield the asserted conditional bound.

Remark 4.1. The bounds in Theorem 1.1 and its corollary may be improved. For example, 
the numerical values of the sum 

∑∞
k=2 ξk(y0) may be reduced by keeping ρ (or even |ω′|) 

in all of the relevant integrals, but of course the computational complexity is expected 
to increase as a cost. In addition, our method would allow an extension of the range 
x ≥ y ≥ 11 in the second half of Theorem 1.1 to the entire range x ≥ y ≥ 2 if we argue 
with y0 = 2657 replaced by some smaller value and enlarge the constant 0.449774.
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