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Number Theorem. In this paper we obtain numerically explicit
versions of de Bruijn’s result.
© 2024 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let > y > 1 be positive real numbers. Throughout the paper, we shall always write
u :=logz/logy, and the letters p and ¢ will always denote primes. We say that a positive
integer n is y-rough if all the prime divisors of n are greater than y. Let ®(z,y) denote
the number of y-rough numbers up to x. Explicitly, we have

‘I)(x,y) = Z 1,

n<zx
P~ (n)>y

where P~ (n) denotes the least prime divisor of n, with the convention that P~ (1) = oc.
When 1 < u < 2, or equivalently when /z < y < z, we simply have ®(z,y) = w(x) —
m(y)+1, where 7(+) is the prime-counting function. The function ®(z,y) is closely related
to the sieve of Eratosthenes, one of the most ancient algorithms for finding primes, and
it has been extensively studied by mathematicians. A simple application of the inclusion-
exclusion principle enables us to write

Oay) = Y ud) |5, (L.1)

d|P(y)

where |a] is the integer part of a for any a € R, u is the Mobius function, and P(y)
denotes the product of primes up to y. If y is relatively small in comparison with x, say
y = 2°(M) | the above formula can be used to obtain O(z,y) ~ e Yz/logy asy — oo, where
v = 0.5772156... is Euler’s constant. However, it turns out that this nice asymptotic
formula does not hold uniformly, as already exemplified by the base case 1 < u < 2.

In 1937, Buchstab [3] showed that for any fixed u > 1, one has ®(z,y) ~ w(u)z/logy
as * — 00, where w(u) is defined to be the unique continuous solution to the delay
differential equation (uw(u))’ = w(u — 1) for u > 2, subject to the initial value condition
w(u) = 1/u for u € [1,2]. Comparing this result with the asymptotic formula obtained
from (1.1), one would expect that w(u) — e~ 7 as u — oo. Indeed, it can be shown
[13, Corollary TIL.6.5] that w(u) = e~ 4+ O(u~"/?) for u > 1. Moreover, it is known
that w(u) oscillates above and below e~ infinitely often. It is convenient to extend the
definition of w(u) by setting w(u) = 0 for all u < 1, so that w(u) satisfies the same delay
differential equation on R \ {1,2}. In the sequel, we shall write w’(1) and w’(2) for the
right derivatives of w(u) at u = 1 and u = 2, respectively. With this convention, we have
(uw(u)) = w(u —1) for all u € R.
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Buchstab’s asymptotic formula can be proved easily based on the following identity
[13, Theorem III1.6.3] named after him:

O(x,y) =D(z,2) + Y Y O(x/p",p) (1.2)

y<p<zv>1

for any z € [y, z]. The Buchstab function w(u) then appears naturally in the iteration
process, starting with ®(x,y) ~ z/(ulogy) in the range 1 < u < 2. Since 1/2 < w(u) < 1
for u € [1,00), Buchstab’s asymptotic formula suggests that the relation ®(x,y) =<
x/logy holds uniformly for > y > 1. Thus, it is of interest to seek numerically explicit
estimates for ®(x, y) that are applicable in wide ranges. Confirming a conjecture of Ford,
the author [6] showed that ®(z,y) < z/logy holds uniformly for > y > 1, which is
essentially best possible when z17¢ < y < ez, where € € (0,1) is fixed. On the other
hand, the values of w(u) indicate that improvements should be expected in the narrower
range 2 < y < /2. In recent work jointly with Pomerance [7], the author proved that
®(x,y) < 0.62/logy holds uniformly for 3 < y < /x. This inequality provides a fairly
good upper bound for ®(z,y), especially considering that the absolute maximum of
w(u) over [2,00) is given by My = 0.5671432..., attained at the unique critical point
u = 2.7632228... of the function (log(u — 1)+ 1)u~! on [2,3]. With a bit more effort, one
can show, using the Buchstab identity (1.2), that

B(z,y) = % (w(u) +0 <@)> (1.3)

uniformly for 2 < y < /z (see [13, Theorem IIL.6.4]). In Section 2, we shall derive a
numerically explicit lower bound of this type that suits our needs. Our method can also
be modified with ease to obtain a numerically explicit upper bound of the same type.

In [4] de Bruijn provided a more precise approximation for ®(x,y) than w(u)z/logy.
Let us fix some yy > 2 for the moment. Suppose that there exist a positive constant
Co(yo) and a positive decreasing function R(z) defined on [yo, o), such that R(z) > 271,
that R(z) — 0 as z — oo and that for all z > yo we have

z

[w(2) = 1i(z)] <

< long(Z) (1.4)

and

T m(t) —li(t

[T s < couorea), (15)
where li(2) is the logarithmic integral defined by

dt
li(z) := [ —.
logt

J g
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The classical version of the Prime Number Theorem allows us to take R(z) =
exp(—cy/log z) for some suitable constant ¢ > 0. Using the zero-free region of
Korobov and Vinogradov for the Riemann zeta-function, we obtain R(z) =
exp(—¢ (log 2)3/5(log log z) ~'/®) for some absolute constant ¢ > 0. If the Riemann Hy-
pothesis holds, then one can take R(z) = ¢’z~/2log? z, where ¢’ > 0 is an absolute
constant.

To state de Bruijn’s result, we define

It is easy to see that 0 < py(u)logy <1 — y!~% and that for every fixed u > 1, we have
py(u)logy — w(u) as y — oo. Precise expansions for p,(u) in terms of the powers of
logy can be found in [13, Theorem I11.6.18]. When 1 < u < 2, the change of variable
t = log v/ logy shows that

u x

uﬂwx:/fﬁhﬁz/ W i) igy).

log v

1 y

Since ®(z,y) = w(z) — 7(y) + 1 when 1 <wu <2, (1.4) clearly implies that

d(z,y) = py(w)z + (r(x) —li(z)) — (7(y) = 1i(y)) + 1 = py(u)z + O (wR(y)) _

logy

It can be shown using (1.4) and (1.5) that

II (1 - 3) = £ (14 O(RW))).

ot P logy

Thus we have, equivalently,

x}“y)>. (1.6)

®(z,y) = py(u)e’zlogy H (1 - ]1,?) +0 ( logy

p<y

Essentially, de Bruijn [4] showed that this formula holds uniformly for z > y > yo. In
Section 3 we shall derive an explicit version of (1.6), which will be applied in Section 4
to obtain numerically explicit estimates with suitable yo and R(y). Our main results are
summarized in the following theorem.

Theorem 1.1. Uniformly for x >y > 2, we have

1 T logy
_ v _Z —_— -
O(z,y) — py(u)e xlogypl:[y <1 p) < 4.403611 (log 9)?/ exp < 6.315) .
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Conditionally on the Riemann Hypothesis, we have

zlogy

1
®(z,y) - py(u)e'zlogy [ | (1 - f?) < 0.449774

p<y
uniformly for x >y > 11.
The following consequence of Theorem 1.1 is sometimes more convenient to use.

Corollary 1.2. Uniformly for x >y > 2, we have

x logy
Bz 1) — 4.434084—— - :
|[©(, y) — py(w)z] < 4.43408 (log y)3/4 eXp( 6.315>

Conditionally on the Riemann Hypothesis, we have

xlogy
®(z,y) — py(u)z| < 0.460680 ——=—=
[©(z,y) — py (u)z] 7

uniformly for x >y > 11.

2. Lower bounds for ®(x,y)

Before moving on to the derivation of Theorem 1.1, we prove a clean lower bound for

®(x,y) which is applicable in a wide range. This lower bound, which is interesting in

itself, will be used in the proof of Theorem 1.1 and Corollary 1.2 in Section 4. We start

by proving the following result, which provides a numerically explicit lower bound for

the implicit constant in the error term in (1.3). As we already mentioned, our method

can easily be adapted to yield a numerically explicit upper bound as well, though it will

not be needed in the present paper.

Proposition 2.1. Define A(z,y) by

®(z,y) = é <w(u) + %)

for 2 <y < /x. Let yo = 602. For every positive integer k > 3, we define
A,y = AL (yo) := inf {min(A(z,),0): y > yo and 2 < u < k}.

Then Ay > —0.563528, A, > —0.887161, and A, > —0.955421 for all k > 5.
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Proof. Let y; := 2,278,383. Suppose first that y > y; and set
1
G)= Y -
zl/v<p</x p
for 2 < v < u. By [5, Theorem 5.6], we have

C1

log” y

’G(v) ~log 2| < (2.1)

for all y > y;, where ¢; = 0.4/ logy;. We shall also make use of the following inequality
[5, Corollary 5.2]7:

z c3 z C2
1 < < 1 2.2
1ogz( +logz> _F(z)_logz( +logz>’ (22)

where co = 142.53816/ logy; and c¢3 = 142/ log y1. We start with the range 2 < u < 3.
In this range, we have

O(z,y) =#{n <z: P~ (n) >y and Q(n) < 2}

=m(z)—m(y)+1+ Z Z 1

y<p<Vzp<q<z/p

=7(z) —w(y)+1+ Z (m(z/p) —m(p) +1),

y<p<Vz

where Q(n) denotes the total number of prime factors of n, with multiplicity counted.
Since

2 2 ’

Z (m(p) — 1) = Z (G—1) = m(vx)(m(vz) —1) 7w(y)(w(y) —1)
ASSVE m(y)<j<m(v/7)

we see that

t(@) —m(y) +1- > (n(p) —1) > n(z) ~ +

y<p<Vw

It follows from (2.2) that

! In [2] it is claimed that the proof of [5, Theorem 4.2] is incorrect due to the application of an incorrect
zero density estimate of Ramafe [10, Theorem 1.1]. In a footnote on p. 2299 of the same paper, the authors
state that the bounds asserted in [5] are likely affected for this reason. However, since they also give a
correct proof of [5, Theorem 4.2] (see [2, Corollary 11.2]), one verifies easily that the proof of [5, Theorem
5.6], which relies only on [5, Theorem 4.2], partial summation, and numerical computation, remains valid.

2 For the same reason mentioned above, it is reasonable to suspect that the bounds given in [5, Corollary
5.2] are also affected. However, one can verify these bounds without much difficulty. Indeed, (5.2) of [5,
Corollary 5.2] is superseded by [11, Corollary 1], while (5.3) and (5.4) of [5, Corollary 5.2] follow from [1,
Lemmas 3.2-3.4] and direct calculations.
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T c3 T Co NG
(0] 1 — 1
(sc,y)>log$( +log:c) 21og2ﬁ( +log\/5) * Sog s <Z<f w(x/p).

(2.3)
To handle the sum in (2.3), we appeal to (2.2) again to arrive at

T C3T
PO CDERDY <plog(w/p)+plog2(x/p)>'

y<p<yVz y<p<T

By partial summation we see that

! v O G(u)luG(v)v
Z plog(x/p)_logm/v—ldG() log y u—1+u/(v—1)2d

y<p<Vz 2- 2~

From (2.1) it follows that

and

Hence

Z T ST <log(u—1) . 2q )
plog(xz/p) ~ logy u ulog®y

y<p<Vz
T 2c1 T
= — — . 2.4
(1 ulong) — (2.4)

Similarly, we have

S ot ] (255) e

y<p<Vz

1 G(u)u? +2/ (vG(v) o

- logZz | (u—1)2 v—1)>3
N
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By (2.1) we have

and

/%dvz!ﬁ <1og§_10212y) v,

e
Since

/u v (11 1o“+] Lo, 1 N\
w_13 %2 W1 2u_12) %2 v—1 " 2w_12) %
2 2
_ 2u—11 u+1/u 1 " 1 d
T w12 B2 2 w12 Tuw—1 ) "
2

u? u 1 1
:—ﬁlog——&-—(log(u—l)—i—l— )

2(u—1 2 2 u—1
and
/" v -1 3
(v—13""  2u-—-1)2 2’
2
we have
u—2 4cq
> log(u —1) 4+ —— — ——— ). 2.5
2 plogQ(w/p)_log2w< glu =+ 1og2y> (25)

y<p<yz

Inserting (2.4) and (2.5) into (2.3) yields

2c lo 1 4cqc 8c 802
M) 2 0(0) = oo+ 5 (2 et 4 e ),

ulogy  wuy3/? log?y  wlogy  w?log’y

where

c3 u—2
=— |1 -1 .
o) = 5 (togtu = 1)+ 222
Using Mathematica we find that Ay > —0.301223 when y > y;.
Now we proceed to bound A, for k > 4 recursively when y > y;. Let & > 3 be
arbitrary. It is easily seen that the following variant of Buchstab’s identity (1.2) holds
for any z € [y, x]:
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O(x,y) = D(z,2) + Y B(z/p,p), (2.6)

y<p<z

where p~ < p is any real number sufficiently close to p. For 3 < k < u < k+ 1 and
y > y1, we obtain by taking z = 2!/3 that

oa,y) =@ (v.a) + D Ba/pp7). (2.7)

y<p<wzl/3

We have already shown that

log x A3 3z [ w(3) 3AS
P /3y > T 3 — ). (28
(x,:r ) ~ logz1/3 “ log z1/3 + log 21/3 logy \ u + u?logy (28)

Note that 2 < log(x/p)/log(p~) < k. Thus, we have

o2 sy o () 257).

Since w(u) is continuous on [1,00), it follows from (2.7) and (2.8) that

3z [(w(3) 3A3 x log AL
i) -1 . (29
(@y) 2 logy ( w uZlogy) T 2 plogp \“ \logp * logp 29)

y<p<zl/3
By partial summation we see that
oo o0 1
1 1 ogt+ 2
Z plog2p</tlog2tdw(t)_ y log? y+/ 21og? t ) dt,
y<p<zl/3 y Y

which, by (2.2), is

1 [logt+2 c
<y () T ()
log”y logy tlog*t logt
Y

1 c 1 co+2 c
:—3<1+3>+ ot ——— + —s
log” y logy 2log”y  3log”y 2log y

1 (1 n (cQ 1) 1 n (02 ) 1 >
= — —_ _— — — C _—
log?y \ 2 3 logy 2 3 log?y

1 (1+(02 1) 1)
logzy 2 3 logy '

A

Hence
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> Agz Ay (%_1_(%2_1) 1 ) (2.10)

perTiraPlog®p ~ logy logy

On the other hand, we have

1 (logx )
S (o
plogp  \logp

y<p<z!/s
! /uv (v—1)dG(v)
~ logx @
b
1 [ [ v
= gz /w(fufl)dv+/vw(vfl)d(G(v)flog 5)
3 3-

Observe that

u

/w(v —1)dv = uw(u) — 3w(3)

w

and that

f/<G(U) —logg> d(vw(v — 1)).

3—

By [13, (6.23), p. 562] and [13, Theorems II1.5.7 & II1.6.6], we have, for all v > 3, that

1
—p(2) =log2 — ,

i(vw(v*l)):(,u(va)Jmu’(vfl)Z :

dv

N | =

—plv—1)=

N | =

d
d—(vw(v 1) <1+p(v—1)<1+p(2)=2-—log?2,

v
where p is the Dickman-de Bruijn function defined to be the unique continuous solution
to the delay differential equation tp’(t) + p(t — 1) = 0 for ¢ > 1, subject to the initial
value condition p(t) =1 for 0 < ¢ < 1. Moreover, we have

lim i(vw(v —1) = lim (wlv—2)4+w'(v—-1))= —i.

v—=3— AU v—3~

It follows by (2.1) that
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u

/ (G(v) ~1og ¥) d(vofv 1)) < —%— (uo(u — 1) - 30(2))
2 log™y
a
Thus we have
[ 2 1) 2aM,
/vw(v —-1)d <G(U) — log E) > — cluw(g ) > 24 20u7
2 log”y log”y
5
where My = 0.5671432.... Hence we have shown that
1 2c1 M,
> 13; w (loﬂ - 1> > IL (w(u) _ 3@ o 0) . (2.11)
y<p§ac1/3 p ng ng Ogy u 1og y

Combining (2.9), (2.10) and (2.11), we deduce that

e 5+ 85 - L (- (2 1) )

for k <u < k+ 1. Therefore, A;",; > min(A; , a;) for all k > 3, where

9A; A; 1
2 2 log 11

a, = - max (201M0 — (%2 — 1) A;,O) .
Consequently, we have A; > —0.451835 and A, > —0.480075 for all k& > 5.
Suppose now that 602 <y < y;. By [11, Theorem 20] we can replace (2.1) with

G(v) ~log 5| <

) 2 VY logy

where dy = 2. Moreover, (2.2) remains true if we replace ¢ and c3 by dy = 1.2762 and
ds = 1, respectively, according to [5, Corollary 5.2]. With these changes, we run the same
argument used to handle the case y > y; and get

2d 1 1 4d,d d d3
M) > glu) = 204 OB (pogy e Sy B )

=L - + +
uyy  uyt/? u? Vylogy — ulogy  u?log’y
when 2 <4 < 3 and

- A
Aw,y)> 258 ¢ S L (20dblogy [fd2 ) Ao
u? 2 log y NG 3

when 3 < k <u < k+ 1, so that we can take

_ 9Ay AL 1 2d1 My log yo ds
ay 2 + 5 Tog 70 max < U 3 50
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As a consequence, we have Ag > —0.563528, A, > —0.887161 and A, > —0.955421 for
all £ > 5. This completes the proof of the proposition. 0O

The next result provides a numerical lower bound for w(u) on [3,00).
Lemma 2.2. We have w(u) > 0.549307 for all u > 3.

Proof. Consider first the case u € [3,4]. Since (tw(t)) = w(t — 1) for t > 2 and w(t) =
(log(t — 1) + 1)/t for t € [2, 3], we have

1 [log(t—2)+1
=—1log2+1 _—
w(u) " og 2+ —|—/ =

3

dt

for u € [3,4]. Note that uw'(u) = w(u — 1) —w(u) = S(u)/u, where

log(u —2) + 1 Fog(t—2) + 1
S(u) == U(Og(z_1)+ )—log2—1—/%dt.
3

Since

1

S'(u) = 1(10g<u—2>+1+ u__ullogu-2)+1)

u—2 u—1

u —

u(l — (u — 2)log(u — 2))
(u—2)(u—1)2 ’

— (log(u — 2) + 1))

we know that S(u) is strictly increasing on [3,u1] and strictly decreasing on [uq,4],
where u; = 3.7632228... is the unique solution to the equation (u — 2)log(u — 2) = 1.
But S(3) =1/2 —log2 < 0 and

4
log2+1 [1
S(4) = 2% + /(%til dt > 0.

3

It follows that S(u) has a unique zero us € [3,4]. The numerical value of ug is given
by ug = 3.4697488..., according to Mathematica. Hence S(u) < 0 for v € [3,uz2) and
S(u) > 0 for u € (ug,4]. The same is true for w’(u), which implies that w(u) is strictly
decreasing on [3, ug] and strictly increasing on [ug, 4]. Thus, w(u) > w(usz) = 0.5608228...
for u € [3,4].

Consider now the case u € [4,00). It is known [8] that w(t) satisfies

p(t—1)

fw(t) e < 22
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for all ¢ > 1. Since p(t) is strictly decreasing on [4,00), we have w(u) > e~ — p(3)/4
for all u > 4. To find the value of p(3), we use ¢p'(t) + p(t — 1) = 0 for t > 1 and
p(t) =1—logt for t € [1,2] to obtain

1 —log(t—1
p(u):l—logQ—/%dt

2

for u € [2,3]. It follows that

3
1 1—log(t — 1
wlu) = e — 2 [1-10g2— [ 11BN 4l g 5403073,
1 1
2

for all u > 4. We have therefore shown that w(u) > 0.549307 for all w > 3. O

We are now ready to prove the following clean lower bound for ®(z, y) that we alluded
to.

Theorem 2.3. We have ®(z,y) > 0.4x/logy uniformly for all 7T <y < x2/3,

Proof. In the range max(7,z%/%) < y < /3, we have trivially ®(z,y) > 7(z) — 7 (y) + 1.
By [5, Corollary 5.2] we have

x 1 y 1.2762
— > 1 — 1
m(@) = nly) = log x ( + logx> logy < + logy >
1 1 1.2
_(L(14 Yy 14 762u T
u log x x log x logy
2 1 1 3.1905 x T
-1+— )1+ —— 0.4
>)<5 ( +'bgm) xl/3 ( " loga )) logy " logy
whenever = > 41,217. Furthermore, we have verified ®(x,y) > 0.4z/logy for
max(7,2%/°) < y < x?/3 with 2 < 41,217 using Mathematica. Hence, ®(z,y) >

0.4z /logy holds in the range max(7,22/°%) <y < x2/3.
Consider now the case max(z'/3,7) < y < 22/°. Following the proof of Proposition 2.1,

we have

O(z,y) =m(z) —7w(y) +1+ > (w(z/p)—7(p)+1)

=m(z) - M(z,y)+ > =(z/p), (2.12)

y<p<azl/?

where
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1 2 1

M(z,y) i= 57 (V) ;

— 57 (VE) = 5m(w)? + Smly) — 1.

To handle the sum in (2.12), we appeal to Theorem 5 and its corollary from [11] to arrive
at

v 1 1 33
B 2 o 7=~ 2
2 2log” x  log“y 25log” y

in the range max(z'/3,7) <y < 2?/°. By [11, Corollary 1] we have

u

1 T v
Z mw(z/p) > x Z = / dG(v),
y<ozai/a <o/ plog(z/p) 1ogx27 v—1

provided that x > 289. The right-hand side of the above can be estimated in the same
way as in the proof of Proposition 2.1, so we obtain

> nloln) > o () - et ) -

- 2
y<reds logy 25ulog” y

On the other hand, we see by [5, Corollary 5.2] and [11, Corollary 2] that

m(z) — M(z,y) > n(x) — %T( (\/5)2 x <1 1 ) 257 x 172

% Togz 1 T 8log?z  logz  8log?
og T ogx 8log” z ogxr 8log”x

for z > 1142. Collecting the estimates above and using the inequality w(u) > w(5/2) =
2(In(3/2) 4+ 1)/5 for u € [5/2, 3], we find that

w(b/2)xz 17z 66 >w(5/2)x_ 17z 132z 045

P(z,y) > > — > 0.
(@,y) logy  8logZz 25ulog®y ~ logy  50log?y 125log®y logy

for all max(46,z'/%) <y < /5. For z'/3 < y < 2%/% with 7 < y < 46, we have verified
the inequality ®(z,y) > 0.42/logy directly through numerical computation.
Next, we consider the range 7 < y < /3. By Proposition 2.1 and Lemma 2.2 we have

B(z,y) > —— <0.549307 -
logy

0.955421
—) > 04—,
logy logy

provided that y > 602. To deal with the range 7 < y < min(m1/3,602), we follow the
inclusion-exclusion technique used in [7, Section 3]. For any integer n > 1, let v(n) denote
the number of distinct prime factors of n. We start by “pre-sieving” with the primes 2,
3, and 5: for any x > 1 the number of integers n < x with ged(n,30) = 1is (4/15)x +r,
where |ry| < 14/15. Let Ps(y) be the product of the primes in (5,y]. Then we have by
the Bonferroni inequalities that



134 K. Fan / Journal of Number Theory 260 (2024) 120-150

B> Y uld) (4-x+u/d) > aly)z - b(y),

15 d
d|P5(y)
v(d)<3
where
4 pld) 4 S 1
= — Lk Sl A —1)J -
oly) =35 R TP d
d|P5(y) Jj=0 d|Ps(y)
v(d)<3 v(d)=j

o
—~
<
S—

Il
|—\|>i
[SARISN
]

R

3
—
Y

\
w
~_

By Newton’s identities, the inner sum in the definition of a(y) can be represented in terms
of the power sums of 1/p over all primes 5 < p < y. Thus, we have ®(x,y) > 0.4z/logy
whenever a(y) > 0.4/logy and x > b(y)/(a(y) — 0.4/ logy). Using Mathematica, we find
that the inequality ®(z,y) > 0.42/logy holds for 7 < y < 602 and x > 13,160,748.
Finally, we have verified the inequality ®(x,y) > 0.4x/logy directly for 7 < y < x!/3
with « < 13,160,748 by numerical calculations, completing the proof of our theorem. O

Remark 2.1. Note that for y € [5,7) we have

4 14 z T
P > —x——>04——2>04
(z,9) 2 BT logs = logy’

provided that z > 52. Combined with Theorem 2.3 and numerical examination of the
case 11 < x < 52, this implies that the inequality ®(z,y) > 0.4z/logy holds in the

2/3

slightly larger range 5 <y < x%/* if one assumes x > 41.

3. An explicit version of de Bruijn’s estimate

To prove Theorem 1.1, we shall first develop an explicit version of (1.6) with a general
R(y), following [4], where R(y) is a positive decreasing function satisfying the same
conditions described in the introduction. Suppose that yy > 3. For each z > 2, put

w-11(-3)

p<z

We start by estimating Q(y) for y > yo. Using a Stieltjes integral, we may write

z

log % = /log (1 - til) dli(y) + /log (1 — til) d(w(y) —1i(t)), (3.1)

Y Y

where z > y > yo. The first integral on the right-hand side of the above is equal to
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z

/log(l—t_l)%: log / (" 4 log (1—+71)) 2

logt

Yy Y

Since

1

e <t log (-t <0
2t(t — 1) +log ( )

for all t > yg, we have

17 ro L dt
_§/tt—1 Ylogt /(t +log (1 -1 ))lgt<0
Yy Y

But a change of variable shows that

dt _7 7d__ 1
tit—1)logt ) t(yt —1) y 2y
1 1

where we have used the inequality y* — 1 > (y — 1)¢ for t > 1 and y > yo. It follows that

z
1 log z
——— < [log (1—t71) dli(y) + 1o <0. 3.2
sy < [ los (1= 7)) + 10w 22 (32)

Y

Now we estimate the second integral on the right-hand side of (3.1). By (1.4) and partial
integration we have

z

/log (1—t71) d(r(y) — (1))

Y

z

<log(1-y™")" %R(y) +log(1-=71)"" @R(z) + / —'”Sf&_lligt)' dt.

Using (1.5) we see that

It is clear that the function

oo

o1t ] t~
IOg(l t ) logt_logtnzzorH—l
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is strictly decreasing for ¢ € (1,00). Since R(t) is decreasing on [yo, 00), we find that

/log (1—t71) d(x(y) —1i(t))| < <210g 1-w!) " lozoyo + Cyo(f%)fo) R(y).

Combining this inequality with (3.1) and (3.2) yields

Q) | 101082 _ 0 (v R(y) (3.3)

~C2(y0) Rly) < log 78 logy ~

for z > y > yo, where
-1 yo  Colyo)yo
logyo  yo—1~

Ca(yo) = C1r(yo) + P m‘

Cl<y0) = 210g (1 — yo_l)

Exponentiating (3.3) we obtain

_Cilyo)R(y) < % 1< Cylyo)R(y) (3.4)

for z > y > yo, where

exp(Cr(yo)R(t)) =1 exp(Ci(yo)R(yo)) — 1

Calyo) = sup R(0) - R(y0) ’
Calyo) = sup L= eXp(R%(yO)R(t)) = Cy(yo).

As a consequence, we have by letting z — oo in (3.4) and using the fact that Q(z) log z —
e~ 7 as z — oo, that

1

e logy(l — Ca(yo)R(y)) < oW < e logy(1 + Cs(yo) R(y))- (35)
Similarly, we derive from (3.3) that
(1= Colon) ) < Q) < (o (1 + Co(m)Rlw)) (36)

for y > yo, where
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exp(Ca(yo)R(t)) — 1 exp(Ca(yo)R(yo)) — 1

GO =T R T R
Co(yo) = sup 1_ eXp(;%%(yO)R(t)) = C1(y0)-

For x > y > 2, we define

O(z,y)
rQ(y)

We then need to estimate n(z,y) = ¥(z,y) — A(z, y), where A\(z,y) := eV, (u) logy. For
1 < w < 2 this can be done straightforward. Indeed, we have ®(z,y) = n(z) — w(y) + 1
and w(u) = 1/u when 1 <u < 2, so that

1/1(5177 y) =

IR0 RS SR P
n(z,y) = o) lgy/t Y L.

1

Note that

u

7T(:v)—7T(y)—rf/t‘lyt‘“dt = W(w)—ﬂ(y)—/w i << =2 )R(y)'

logt logx  logy
Y

From (3.5) it follows that |n(x,y)| < eYay(u)R(y) for y > yo and u € [1,2], where

U

log y logy / -1, t— <1 1— >
a,(u) i = —=——+C +1lo t vdt | +(1+C R -+ “.
y(u) SR 3(%0) o gy Yy (1+C3(yo) R(y)) oty

Integration by parts enables us to write

u u

1
logy/t—lyt—u dt — E _ yl—u + /t—Zyt—u dt
1 1

for y > yo. Hence |n(z,y)| < e"m(y)R(y) for y > yo and u € [1, 2], where

m(y) == sup ;(;% + ax (Cs(yo)fy(U) + (14 Cs(yo)R(y)) (% + yl‘“)) (3.7)

with



138 K. Fan / Journal of Number Theory 260 (2024) 120-150

We remark that I, (u) is strictly decreasing on [1,2] and hence satisfies I, (u) < 1 for
€ (1,2], since its derivative is

u

-2, t—u
I;(u):—/t y " “logydt < 0.
1

Thus, (3.7) simplifies to

m(y) = i;lg thg( ) + C3(yo) + 2(1 + C3(yo) R(y))- (3.8)

Suppose now that y > yo and v > 2. From (2.6) it follows that

p_)-% II (1—%)7 (3.9)

y<p<z y<q<p

Q(2)
Q)

P, y) = Pz, 2)

where z > y > yo. Put h:=1logz/logy > 1 and
-y T Q__) (3.10)
y<p<y® y<q<p

for v > 1. Then we have H,(v) = 1 — Q(y”)/Q(y). By partial summation, we see that
(3.9) becomes

h
Blay) = Py y") (1 - +/w“” y*)") dH, (). (3.11)
1

By (3.4) we have
[Hy(v) = L+ 07| < Cr(yo)R(y),

where C7(yo) := max(C3(yo), C1(yo)). Thus, one can think of 1 — v~! as a smooth
approximation to Hy(v). Since we also expect A(x,y) to be a smooth approximation to
Y(x,y), in view of (3.11) it is reasonable to expect

h
Ei(hy,u) == ANy™y) — Ay*,y")h ! - //\(1/"”,1/’)0’2 dv
1

to be small in size as a function of y. This can be easily verified when 1 < h < u/2.
Following de Bruijn [4], we have

0
_El(h,ya ) = _h_

o y") +RTEAY  y) — RTIAY T ). (3.12)

6h(
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Since
Mot T e
m:h/y “w(t) dt,
we find
a (Ay",y") ' ht— " ht— —2 -1
8h<eﬂogy> = /y “w(t)dt +h logy/y “(tw(t)) dt — uh™“w(uh™")
1

Recall that (tw(t)) = w(t — 1) for t € R with the obvious extension w(t) = 0 for t < 1.
It follows that

u/h w/h w/h
logy / YT (tw(t)) dt = byt T (tw(t)) —h! / YT (t — 1) dt
1
1 1

u/h—1
= uh 2w(uh™t) — A lyhTe — pT Iy / Y w(t) dt
1

=uh 2w(uh™) — Ky — (h2e) logy)_1 Ayehyh).

Hence we have
w/h

9 u —u —u - u—
2 Ay y") = ¢ logy / YTty dt =y | = RTIA Y  y)

Oh
1

=B Ay y") — ey T logy — hTIA (T ).
Inserting this in (3.12) yields

a . =1 v, h—u
o5, Ly, u) = h™ ey logy.

Integrating both sides with respect to h and using the initial value condition F; (1;y,u) =
0, we obtain

h
Ei(hy,u) =€ logy/t_lyt_“ dt < eyl (3.13)
1

In what follows, we shall always suppose that 1 < h < u/2. Following de Bruijn [4],
we proceed to show that
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h
Bahig,u) i= Mu",) = Mo, (1= HO0) = [ A*~".0) dH (h)
1
is small in size as a function of y. This is intuitive, because
h
Ay, y")ht — /)\(y“_”,y”)v_z dv (3.14)
1

is a good approximation to A(y*,y), as we have already demonstrated. Consequently,
the expression (3.14) can be thought of as a smooth approximation to

h
N1 )~ [ 2y dH D).
Moreover, we have by (3.11) that
h
n(e,) = ny" ") (1 — Hy(h) + / (", (4") ") dHy(v) — Es(hiy,w),  (3.15)
1

which will later be used to estimate n(z,y). To estimate E3(h;y,u), let us write
Es(h;y,u) = E1(h;y,u) + Ea(h;y,u), where

h
Es(hy,u) == — / Ay~ y")d (H(v) = 1+v7h) + (H(h) = L+ A7 DAY, y").
1
Then we expect Es(h;y,u) to be small in size as a function of y. Using (3.10) and the

observation that H(1) = 0, we have

h

u u— a uU—v v
|Ea(hyy,w)| < | | Ay™, 9" — Ay h,yh)\+/ 5.\ YY) dv | Crlyo)R(y)-
(3.16)
Note that
N hoh u/h u/h
My®, yh) — My ", Y Y
y y;@yloéyy v _ /yht w(t)dt — /y’” w(t—1)dt
1 2
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u/h

2
:/t—ly’”—“ dt — /yht_“tw’(t) dt.
1 2

By Theorems II1.5.7 and II1.6.6 in [13] we have

1
") < p(t) < 3.17
O < ) < Fy (3.17)
for all t > 1. It follows that
2 w/h
A" y") = A" y")| < helogy /fly’”*“ dt + / y" M tp(t)dt | (3.18)
1 2
This inequality will later be used in conjunction with the formulas
2 2
y2h—u
hlogy/t—lyhf—“ dt = =—— - Y /t‘2yht_“ dt (3.19)
1 1

and

w/h

w/h
mlogy [ 4" tp(t)dt = uhpluht) — 2p(2P" = [ 4 a0
2 2

w/h
< uh7p(uh™h) = 2p(2)y*h T + / y" T p(t — 1) dt. (3.20)

[ V)

On the other hand, we have

u/v
Ay, y") / -
= VUt — 1) dt
e7logy yr el ) dt,
which implies that
a A( U—v ’U) u/v
) Y vt—u —1 —1
e AT A 1+ tol 1) dt — —1).
5 ( o Togy ) /y (1+tvlogy)w(t —1)dt — uv™ w(uw )

By partial integration, the right side of the above is easily seen to be

w/v

—2y?VY — / YW (t — 1) dt.
2
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Hence, we arrive at

[l

Furthermore, we have by Fubini’s theorem that

h u/v

h
8
— dv < e¥logy 2/y2”_“ dv+//y”t_“t|w’(t— 1)| dtdv
1 1 2

5 Y yY)

h u/v u/h h u u/t
// ViU W (t—1)| dtdv = // VW (- 1) |dvdt+// VB W (- 1)| do dt,
u/h 1

the right side of which is easily seen to be

w/h u u
1
logy / y" T (= 1)) e+ / jw'(t = 1)] dt — / Y (= 1)) dt
2 u/h 2
It follows that
h 9 u/h w
/‘% ’U) dv < e” y2h—u+ /yht_u|wl(t—1)|dt—|— / |wl(t—1)|dt
' 2 u/h

(3.21)
This estimate together with (3.18) will lead us to a good estimate for Fy(h;y,u).
Now we derive estimates for F5(h;y, u) that suit our needs. Suppose that k < u < k+1
and take h = hy = u/k, where k > 2 is a positive integer. We first consider the case
k = 2. In view of (3.19), we see that (3.18) simplifies to

N | =

2
IN(y*,y") = A (y* "2, y") | < @ +/t’2y6_2dt =e"1,,(2)
1

for y > yo. By (3.21) we have

ho
[ oot

since w'(t) = —1/t? for t € [1,2). Combining these estimates with (3.13) and (3.16), we
obtain Es(ho;y,u) < €€ (yo)R(y) for y > yo and 2 < u < 3, where

, 3e7
dv<e’ [1+4 [ |o'(t—1)|dt =5

&2(yo) == + C7(yo) (I (2) + g) .

1
>1/0 tR( )
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Now we handle the case k > 3. From (3.17)—(3.20) it follows that

2
1 3

])\ (y“,yhk) - (y“*hk,yh’“)‘ < e O] + (210g2 - 5) R 4 /tiQyt*k dt

1

k

3

+/yt_’“(1—log(t—l))dt+/y T |
3

2

where we have used the fact that p(t) =1 —logt for ¢ € [1,2]. By (3.17) and (3.21) we
have

hi 3 k k+1

dt dt dt
< o | o2k t—k t—k U _at
wze (i [y (t_1)2+3/y r<t>+k/r<t>

Together with (3.13) and (3.16), these inequalities imply that Fs(hg;y, u) < 7€k (yo)R(y)
fory>yoand 3 <k <u<k+1, where

k+1
dt

€k (yo) = (gaﬁ ﬁ) o " + Cr(wo) ﬁ + / oM (2 log2 — %) v "
k

2 3 k
1 dt
-2 t—k t—k t—k
+ 1—log(t—1 2 —
/t Y6 dt—i—/yo ( og(t—1) + (t1)2> dt + /yo 0]
1 2

3

As a direct corollary, we obtain

o Yo 1 1T at 1

_ o S 2log2 — 1
;ﬁk(yo) 7o 1 T ey + Crlwo) e — +/F + og
- 3

1 T oy dt

I, (2 =21 —1log(t—1 — | dt+ 2 ey =2

+%o yo( )+/y0 ( Og( )+ (t—1)2> + /yO F(t) ’
2 3

where we have applied partial summation to derive
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_ 1 /y{t} dt
yo—1J 7 T(t)

For computational purposes, we can transform the last integral above by observing that

{4y dt = 1 . dt
3/3,0 W_O/(;_:O(t+2).--(t+2+n)>yor(t+2)'

Let
(s, z) := /vs_le_” dv
0

be the lower incomplete gamma function, where s € C with R(s) > 0 and z > 0. It is
well known that

(s —zez

ss—I-l “(s+mn)’

n=0
from which it follows that

o0

1
nz::()(t+2)"-(t+2+n) =(t+2,1)e.

Thus we obtain

> Yo 1 1 7 dt
p— C —_ = —_—
kzﬁf’“(y@ o1 mm T L em 3t [ 1

3
/ 1
2102 — 1 I, (2 =201 —log(t— 1)+ ——— | dt

t o og +y0yo()+/yo( og( )+(t_1)2>

2
[ Alt+2,1)
i+ 2,
2 ARl
+e/yor(tJrz)
0

(3.22)
In Mathematica, the function v(¢t 4+ 2,1) can be evaluated by “Gammalt+2,0,1]".
Finally, we are ready to estimate n(z,y). Let

1
ne(y) == sup |n(t",t
) e R(y) ue[k,k+1)| ( )
t>y
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for k > 1 and y > yo, where the value of n; (y) is provided by (3.8). Using (3.15) and the
estimates for Fs(hg;y,u) with y > yo and 2 < k <u < k+ 1, we find

Me(Yy) < Me-1(y) + &k (vo)
for all £ > 2 and y > yo, from which we derive

k

me(y) <my)+ > &lvo)

(=2

for all k > 1 and y > yo. Since 71 (y) is decreasing on [yg, 00), we have therefore shown
that

In(z,y)| < e” <m(yo) + Z&(%)) R(y) (3.23)

k=2

for all y > yo, where the infinite sum can be evaluated using (3.22). To derive an explicit
version of de Bruijn’s result (1.6), we observe that (3.6), (3.23) and [11, Theorem 23]
imply that Q(y)[n(z,y)| < Cs(yo)R(y)/logy for all y > yo, where

Cs(yo) := B(wo) (771(1/0) + Zﬁk(%))
with

1, if 3 < yo < 108,
B(yo) = . .
exp(Ca(yo)R(yo)),  if yo = 10°

Hence, it follows that

P logy

B(a,y) — py(w)e zlogy [ (1 -

Py

1> _ Cs(y)zR(y) (3.24)

for all y > yg.
4. Deduction of Theorem 1.1 and Corollary 1.2

Now we apply (3.24) to obtain explicit estimates for ®(x,y) with specific choices of
R(y). Unconditionally, it has been shown [9, Corollary 2] that

. z log =
—1 <0.2593 ——— —
In(z) = hiz)] < (log 2)3/4 P ( 6.315)
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for all z > 229. With yo > 229, the function

1
R(z) = 0.2593(log 2)'/* exp (‘ 6?55)

is strictly decreasing on [yg, c0) and satisfies (1.4) and (1.5) with

/6.315
CO(yO) =2 1 5
0g Yo

7 1 logt i 1 t
S S dit=2 | —exp(— dt
/ Hllog 0371 P ( 6.315> / N ( 6.315>

since

Jogz

it [ en( )

2 o [ —

(log z)1/4 P\ " 6315
Jogz

_ 2¢/6.315 oxp [ — log 2z
~ (og2) /4 P\ TV 6315

for z > yo. Numerical computation using Mathematica allows us to conclude that

1 x logy
O(z,y) — py(u)ezlogy [ [ (1 - p) < 4.403611W exp (\ / : 315> (4.1)

p<y

for all x > y > 229. Suppose now that 2 < y < 229. Using the inequalities ®(x,y) <
x/logy [6, Theorem], [[ ., (1 —1/p) < e 7/logy [11, Theorem 23] and 0 < p,(u) <
1/logy, we have

1 21 x [ logy
d(z,y) — My(mevx logy H (1 — 5) < —logy < 4.4036117(10g y)3/4 exp (— 6.315)

p<y

P<y

for all 2 <y < 229. Combining this with (4.1) proves the first half of Theorem 1.1.
Under the assumption of the Riemann Hypothesis, it is known [12, Corollary 1] that

1
|m(2) —1li(2)] < —+/zlog z
81
for all z > 2657. With yg = 2657 and

_ log? z

R(z) = 8my/z’
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Table 1
Numerical Constants.
constants unconditional estimates conditional estimates
Yo 229 108 2657 108
R(yo) 156576 .097363 047992 .001351
Co(yo) 2.156096 1.171019 .317985 .120362
C1(yo) 2.534430 1.279593 .571800 .228936
Ca(yo) 2.548436  1.279593 575723 .228940
Cs(yo) 3.110976  1.362717 579718 228971
C4(yo) 2.548436 1.279593 575723 .228940
C5(yo) 3.131827 1.362717 .583750 228975
Cs(yo) 2.534430  1.279593 571800  .228936
C7(yo) 3.110976 1.362717 579718 228971
Cs(yo) 16.982691 9.079975 4.638553 2.967998
71 (o) 6.236726  3.628074 2.697198  2.229726
3% €r(yo)  10.745960  4.388310 1.941356  .737355
we have
| o0
m(t —11 1 logt 10gz—|—2
S o 3/2 S CO(yO)R(Z)
7r t 4z
for z > yg, where
2(log yo + 2)
Co (yO) = 5 .
log™ o
Therefore, we conclude by (3.24) and numerical calculations that
- 1 zlogy
O(x,y) — py(u)e'zlogy [] (1 - = )| < 0.184563 (4.2)
p

p<y

for all x > y > 2657. The values of relevant constants are recorded in Table 1.
To complete the proof of the second half of Theorem 1.1, it remains to deal with the
case 11 < y < 2657. For simplicity of notation we set

1
D) i= 3(z.9) = () aogy T (1-7).
P<y p
Using Mathematica we find that
I
M= max G TG osgiy,
11<2<2657  (/zlogz
1
m:= min e logz [] (1 - —> > 0.876248.
11<2<2657 o D

If /x <y < x, then
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®(2,y) = py(u)r + (7(x) — li(z)) — (7(y) — li(y)) + L.

Note that x < y? < 10%. Since 7(z) < li(z) for 2 < z < 10® by [11, Theorem 16] and

1 e 7
[(-5)
P log 2z

p<z

for 0 < z < 10® by [11, Theorem 23], we have

ID(z,y)| < (1—m) (1—y~Y) % + Myzlogz + 1

_ logy  logy x
§<(1—m)(1_y N+ M i + T (4.3)

where we have used the fact that logz/\/z is strictly decreasing on [e?, 00). Numerical
computation shows that the right side of (4.3) is < 0.449774x logy/,/y for 11 < y < 2657.
Suppose now that 11 < y < /z. By [7, Theorem 1], Theorem 2.3 and [11, Theorem 23]
we have, for 11 <y < 2657,

2

T zlogy
D(z, <(06—— 1— )— 0.449774 :
(z,y) < 5 1=y gy

1
D(z,y) > (0.4 — My)—— > —0.44977428Y

logy
This settles the case 11 < y < 2657 and completes the proof of Theorem 1.1.
The proof of Corollary 1.2 is similar, and we shall only sketch it. When y > yo, where
yo = 229 for the unconditional estimate and yg = 2657 for the conditional estimate, we
have by the triangle inequality that

1 z
9(o.y) = el < DG + 1= oy T (1= ) oo
<y p ogy

Then we bound |D(z, y)| using the values of Cs(yo) listed in the table above. To estimate
the second term, we use (3.6) when y > 10® and the inequality

1
m(y) < e’ logy H (1 — —) <1
< p
p<y
when 3y < y < 108, where m(y) is given by
0.983296, if 229 <y < 2657,

m(y) := q 0.996426, if 2657 <y < 210,000,
0.999643,  if 210,000 < y < 108,
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according to [11, Theorem 23] and Mathematica. This leads to the asserted bounds for
Yy > yo. Suppose now that y < yg. In this case, the proof of the unconditional bound
is exactly the same as that of the unconditional bound in Theorem 1.1. As for the
conditional bound, we argue in the same way as in the proof of Theorem 1.1 to get

log?y logy> x
Pz, y) — py(u)z| < (M +
0(r,) — o] < (M B )

when /z <y < z and

x
logy’

[©(2,y) — py(u)z| < (0.6 - % (1— y—l))

X
(2, y) — py(u)x| > (0.4 — MO)@?

when 11 < y < /z. Together, these inequalities yield the asserted conditional bound.

Remark 4.1. The bounds in Theorem 1.1 and its corollary may be improved. For example,
the numerical values of the sum Y~ , & (yo) may be reduced by keeping p (or even |w'|)
in all of the relevant integrals, but of course the computational complexity is expected
to increase as a cost. In addition, our method would allow an extension of the range
x >y > 11 in the second half of Theorem 1.1 to the entire range z > y > 2 if we argue
with yo = 2657 replaced by some smaller value and enlarge the constant 0.449774.
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