
ROUGH NUMBERS AND VARIATIONS ON THE ERDŐS–KAC
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Abstract

The study of arithmetic functions, functions with domain N and codomain C, has

been a central topic in number theory. This work is dedicated to the study of the

distribution of arithmetic functions of great interest in analytic and probabilistic

number theory.

In the first part, we study the distribution of positive integers free of prime factors

less than or equal to any given real number y ≥ 1. Denoting by Φ(x, y) the count

of these numbers up to any given x ≥ y, we show, by a combination of analytic

methods and sieves, that Φ(x, y) < 0.6x/log y holds uniformly for all 3 ≤ y ≤
?
x,

improving upon an earlier result of the author in the same range. We also prove

numerically explicit estimates of the de Bruijn type for Φ(x, y) which are applicable

in wide ranges.

In the second part, we turn to the topic of weighted Erdős–Kac theorems for

general additive functions. Our results concern the distribution of additive functions

f(n) weighted by nonnegative multiplicative functions α(n) in a wide class. Building

on the moment method of Granville, Soundararajan, Khan, Milinovich and Subedi, we

establish uniform asymptotic formulas for the moments of f(n) with a suitable growth

rate. Our method also enables us to prove a qualitative result on the moments which

extends a theorem of Delange and Halberstam on the moments of additive functions.

As a consequence, we obtain a weighted analogue of the Kubilius–Shapiro theorem

with simple and interesting applications to the Ramanujan tau function and Euler’s
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totient function, the latter of which generalizes an old result of Erdős and Pomerance

which shows that as an arithmetic function, the total number of prime factors of

values of Euler’s totient function satisfies a Gaussian law.
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Preface

The present work summarizes my thesis research as a doctoral student at Dartmouth

College. Explored herein are two intriguing topics from analytic and probabilistic

number theory: the distribution of rough numbers and Erdős–Kac type theorems on

the distribution of values of additive functions, both of which enjoy a rich history and

find applications in other branches of number theory. Chapter 1 of this work provides

historical backgrounds and motivations for the study of these two topics. The rest of

the chapters are devoted to the main results and their proofs, with Chapter 2 focusing

on explicit estimates for the number Φ(x, y) of y-rough numbers not exceeding x and

Chapter 3 on weighted variants of the Erdős–Kac theorem. Also found in Chapter 3

are two applications to certain arithmetic functions of special interests.

My research on rough numbers was inspired by the problem of finding an explicit

constant C > 0, as small as possible, for which the inequality Φ(x, y) ≤ Cx/log y

holds for all 1 < y ≤ x, a problem proposed by Kevin Ford and communicated to me

by my advisor Carl Pomerance. Back then I was in my third year of graduate study,

having a hard time finding the right research topics and advisor for my thesis. I was

hoping to work with Carl in analytic number theory, but I was aware that he had

retired from his position. Nevertheless, we still kept in touch with each other and met

occasionally to discuss number theory. During one of our meetings, Carl brought up

the inequality on Φ(x, y) above that he heard from Ford, who observed that one could

take C = 2 and wondered whether smaller constants were also permissible. This little
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problem immediately seized my attention, in that I had a vague feeling that I might

be able to make progress based on what I read about sieve theory. After a weekend

of investigation of this problem, I succeeded in solving it by combining the arithmetic

large sieve with some explicit estimates on prime numbers. With Carl’s help, I was

able to simplify my proof and make it clearer and more compact than it originally

was, and this soon led to the publication of my paper [27], which laid the foundation

for my thesis research on this subject.

My interest in the distribution of additive functions, and especially in the Erdős–

Kac type theorems, grew out of my independent study of this topic during my third

year of graduate study. I was fortunate to obtain the firsthand knowledge about

Selberg’s central limit theorem for the Riemann zeta-function in an online graduate

course taught by Kannan Soundararajan, which piqued my interest in exploring the

limiting distribution of arithmetic functions. Then came an unexpected turn of events

in the summer of 2022, which completely changed the path of my graduate research. It

started with my encounter with the paper [38] on a weighted version of the Erdős–Kac

theorem. After examining the paper, I arrived at the conclusion that their argument

for the divisor functions could be generalized to treat a wide class of multiplicative

functions, which led me to prove a few theorems, record them in a draft, and send

it to Carl for feedback. Unaware of the dramatic event that would only unfold days

after, I received an encouraging message from him and was very happy to hear that he

was interested in my theorems. Soon we had a meeting during which I talked briefly

about my results. When we were about to call it a day, Carl asked “How about you

writing a thesis on rough numbers and Erdős–Kac?” Honestly, I was confused because

at that point I had found no faculty member in the department to advisor my research

on these topics. But then he continued “By working with me.” In retrospect, it is

hardly an exaggeration that the present work would not have existed had this event
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Chapter 1

Introduction

In this chapter, we give a thorough introduction to the two themes into which we shall

delve later: the distribution of rough numbers and the weighted Erdős–Kac theorems.

Our intention is to provide a bird’s-eye view of these themes but reserve the technical

material to later chapters.

Starting in Section 1.1, we introduce the notion of y-rough numbers and its count-

ing function Φ(x, y), followed by a discussion of some previous work on the asymptotic

formulas and explicit estimates for Φ(x, y) and then a preview of the main results

which will be restated formally and established later in Chapter 2. Moving on to

the second theme in Section 1.2, we discuss the history of the celebrated Erdős–Kac

theorem on the distribution of the number of distinct prime factors of a positive in-

teger as well as some recent work on its weighted variants, and we provide a simple

probabilistic heuristic for this theorem. Rather than formulate our main results here,

we opt to present two intriguing applications of them following our discussion on the

historical background while reserving the formal statements of our results and their

proofs to Chapter 3.
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1.1 The Distribution of Rough Numbers

Section 1.1

The Distribution of Rough Numbers

Let x ≥ y > 1. Throughout this chapter, we shall always write u = u(x, y) :=

log x/log y, and the letters p and q will always denote primes. We say that a positive

integer n is y-rough if all the prime divisors of n are greater than y. Let Φ(x, y)

denote the number of y-rough numbers up to x. Explicitly, we have

Φ(x, y) =
∑
n≤x

P−(n)>y

1,

where P−(n) denotes the least prime divisor of n, with the convention that P−(1) =

∞. When 1 ≤ u ≤ 2, or equivalently when
?
x ≤ y ≤ x, we simply have Φ(x, y) =

π(x) − π(y) + 1, where π(x) demotes the number of primes up to x. The function

Φ(x, y) is closely related to the sieve of Eratosthenes, an ancient algorithm for find-

ing primes, and Φ(x, y) has been extensively studied by mathematicians. A simple

application of the inclusion-exclusion principle enables us to write

Φ(x, y) =
∑
d|P (y)

µ(d)
⌊x
d

⌋
, (1.1.1)

where ⌊a⌋ is the integer part of a for any a ∈ R, µ is the Möbius function, and P (y)

denotes the product of primes up to y. If y is relatively small in comparison with x,

say y = xo(1), the above formula can be used to obtain

Φ(x, y) ∼ x
∏
p≤y

ˆ

1− 1

p

˙

∼ e−γx

log y
(1.1.2)

as x → ∞, where γ = 0.5772156... is the Euler–Mascheroni constant. This is also

suggested by the heuristic based on the assumption that divisibility by a small prime

2



1.1 The Distribution of Rough Numbers

p ≤ y and divisibility by a different prime q ≤ y are close to being independent.

However, it turns out that (1.1.2) does not hold uniformly, as already exemplified

by the base case 1 ≤ u < 2. The issue lies in the fact that the assumption on the

independence of divisibility fails to hold for primes that are relatively large compared

to x. For instance, if y ∈ [
?
x, x] is large, and if p1, p2, p3 ∈ (y/8, y] are three distinct

primes, whose existence is assured by Bertrand’s postulate, then for a randomly

chosen positive integer n ≤ x, the events pi | n (1 ≤ i ≤ 3) are strongly correlated,

in the sense that they cannot occur simultaneously. For this reason, the charming

heuristic for (1.1.2) no longer makes sense when y is relatively large in comparison

to x, and one would thus expect a heavy dependence of the asymptotic behavior of

Φ(x, y) on the relation between x and y, or equivalently, on the values of u.

In 1937, Buchstab [7] showed that for any fixed u > 1, one has Φ(x, y) ∼

ω(u)x/log y as x → ∞, where ω(u) is defined to be the unique continuous solu-

tion to the delay differential equation (uω(u))′ = ω(u − 1) for u ≥ 2, subject to

the initial value condition ω(u) = 1/u for u ∈ [1, 2]. Comparing this result with

the asymptotic formula obtained from (1.1.1), one would expect that ω(u) → e−γ as

u → ∞. Indeed, it can be shown [56, Corollary III.6.5] that ω(u) = e−γ + O(u−u/2)

for u ≥ 1. Moreover, it is known that ω(u) oscillates above and below e−γ infinitely

often. The following graphs generated by Mathematica provide a snapshot of the

behavior of ω(u) on [1, 7].
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1.1 The Distribution of Rough Numbers

Figure 1.1: The Buchstab Function ω(u) on [1, 7]

(a) u ∈ [1, 3]

(b) u ∈ [3, 5]

(c) u ∈ [5, 7]

Buchstab’s asymptotic formula can be proved easily based on the following identity
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1.1 The Distribution of Rough Numbers

[56, Theorem III.6.3] named after him:

Φ(x, y) = Φ(x, z) +
∑

y<p≤z

∑
v≥1

Φ(x/pv, p) (1.1.3)

for any z ∈ [y, x]. The Buchstab function ω(u) then appears naturally in the iter-

ation process, starting with Φ(x, y) ∼ x/(u log y) in the range 1 < u ≤ 2. Since

1/2 ≤ ω(u) ≤ 1 for u ∈ [1,∞), Buchstab’s asymptotic formula suggests that the

relation Φ(x, y) ≍ x/log y holds uniformly for x ≥ y > 1. Thus, it is of interest

to seek numerically explicit estimates for Φ(x, y) that are applicable in wide ranges.

Confirming a conjecture of Ford, the author [27] showed that Φ(x, y) < x/log y holds

for all x ≥ y > 1, which is essentially best possible when x1−ϵ ≤ y ≤ ϵx, where

ϵ ∈ (0, 1) is fixed. With a bit more effort, one can show, using the Buchstab identity

(1.1.3), that

Φ(x, y) =
x

log y

ˆ

ω(u) +O

ˆ

1

log y

˙˙

(1.1.4)

uniformly for 2 ≤ y ≤
?
x (see [56, Theorem III.6.4]).

In [10] de Bruijn provided a more precise approximation for Φ(x, y) than ω(u)x/log y.

Let us fix some y0 ≥ 2 for the moment. Suppose that there exist a positive con-

stant C0(y0) and a positive decreasing function R(z) defined on [y0,∞), such that

R(z) ≫ z−1, that R(z) ↓ 0 as z → ∞ and that for all z ≥ y0 we have

|π(z)− li(z)|≤ z

log z
R(z) (1.1.5)

and ∫ ∞

z

|π(t)− li(t)|
t2

dt ≤ C0(y0)R(z), (1.1.6)

5



1.1 The Distribution of Rough Numbers

where li(z) is the logarithmic integral defined by

li(z) :=

∫ z

0

dt

log t
.

The classical version of the Prime Number Theorem allows us to takeR(z) = exp(−c
?
log z)

for some suitable constant c > 0. Using the zero-free region of Korobov and Vino-

gradov for the Riemann zeta-function, we obtainR(z) = exp(−c′(log z)3/5(log log z)−1/5)

for some absolute constant c′ > 0. If the Riemann Hypothesis holds, then one can

take R(z) = c′′z−1/2 log2 z, where c′′ > 0 is an absolute constant.

To state de Bruijn’s result, we define

µy(u) :=

∫ u

1

yt−uω(t) dt.

It is easy to see that 0 ≤ µy(u) log y ≤ 1 − y1−u and that for every fixed u ≥ 1, we

have µy(u) log y → ω(u) as y → ∞. Precise expansions for µy(u) in terms of the

powers of log y can be found in [56, Theorem III.6.18]. When 1 ≤ u ≤ 2, the change

of variable t = log v/log y shows that

µy(u)x =

∫ u

1

t−1yt dt =

∫ x

y

dv

log v
= li(x)− li(y).

Since Φ(x, y) = π(x)− π(y) + 1 when 1 ≤ u ≤ 2, (1.1.5) clearly implies that

Φ(x, y) = µy(u)x+ (π(x)− li(x))− (π(y)− li(y)) + 1 = µy(u)x+O

ˆ

xR(y)

log y

˙

.

It can be shown using (1.1.5) and (1.1.6) that

∏
p≤y

ˆ

1− 1

p

˙

=
e−γ

log y
p1 +O(R(y))q .

6



1.2 The Weighted Erdős–Kac Theorems

Thus we have, equivalently,

Φ(x, y) = µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

+O

ˆ

xR(y)

log y

˙

. (1.1.7)

Essentially, de Bruijn [10] showed that this formula holds uniformly for x ≥ y ≥ y0.

In Chapter 2 we shall prove several numerically explicit estimates for Φ(x, y). As

one can see from Figure 1.1 above, the values of ω(u) for u ≥ 2 indicate that better

upper bounds for Φ(x, y) than x/log x should be expected in the narrower range

2 ≤ y ≤
?
x. In recent work jointly with Pomerance [28], the author showed that

Φ(x, y) < 0.6x/log y holds for all 3 ≤ y ≤
?
x. We shall present the proof of this

result in Section 2.2.

It is also of interest to obtain numerically explicit versions of de Bruijn’s formula

(1.1.7). In Section 2.3 we shall show that for all x ≥ y ≥ 2, we have

ˇ

ˇ

ˇ

ˇ

ˇ

Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

< 4.403611
x

(log y)3/4
exp

˜

−
c

log y

6.315

¸

.

Moreover, if one assumes the validity of the Riemann Hypothesis, then

ˇ

ˇ

ˇ

ˇ

ˇ

Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

< 0.449774
x log y

?
y

holds for all x ≥ y ≥ 11.

Section 1.2

The Weighted Erdős–Kac Theorems

The celebrated Erdős–Kac theorem, first proved by Erdős and Kac [24] in 1940, states

that if ω(n) denotes the number of distinct prime divisors of a positive integer n (not

7



1.2 The Weighted Erdős–Kac Theorems

to be confused with the Buchstab function defined in Section 1.1), then

lim
x→∞

1

x
·#

{
n ≤ x:

ω(n)− log log n
?
log log n

≤ V

}
= Φ(V ) (1.2.1)

for any given V ∈ R, where

Φ(V ) :=
1

?
2π

∫ V

−∞
e−v2/2 dv

is the cumulative distribution function of the standard Gaussian distribution. This

statistical result is a direct upgrade to an earlier theorem of Hardy and Ramanujan on

the normal order of ω(n) (see [34] and [35, Theorem 431]), which asserts that given

any ϵ > 0, the inequality |ω(n) − log log n|< ϵ log log n holds for all but o(x) values

of n ≤ x. In fact, Erdős and Kac proved in the same paper a more general result

in which the function ω(n) can be replaced by any strongly additive function f that

is bounded on primes and has an unbounded “variance”
∑

p≤x f(p)
2/p. Recall that

an arithmetic function f :N → C is said to be additive if f(mn) = f(m) + f(n) for

all positive integers m,n ∈ N with gcd(m,n) = 1. It is called strongly additive if it

also satisfies the condition that f(pν) = f(p) for all prime powers pν . Thus, strongly

additive functions are completely determined by their values at primes, which makes

them a particularly nice subclass of additive functions.

Analogously, it can be shown that (1.2.1) remains true if one replaces ω(n) by

its cousin Ω(n), which denotes the total number of prime factors of n, counting

multiplicity. Indeed, this follows from the fact that

∑
n≤x

(Ω(n)− ω(n)) = O(x). (1.2.2)

8



1.2 The Weighted Erdős–Kac Theorems

In particular, given any ϵ > 0 we have

#
{
n ≤ x: Ω(n)− ω(n) > ϵ

a

log log n
}
= O

ˆ

x

ϵ
?
log log x

˙

,

which is sufficient for deducing from the Erdős–Kac theorem that (1.2.1) also holds

with Ω(n) in place of ω(n).

The Erdős–Kac theorem was first predicted by Kac. From a probabilistic point of

view, one may model a positive integer n ≤ x by a random variable n with the uniform

probability distribution on [1, x]. For each prime p ≤ x, let Xp(n) be a Bernoulli

random variable which takes value 1 if p | n and 0 otherwise. Then Prob(Xp(n) =

1) = ⌊x/p⌋/x = 1/p+O(1/x). It is clear that

ω(n) =
∑
p≤x

Xp(n).

The expectation of ω(n) is easily seen to be

E(ω(n)) =
∑
p≤x

E(Xp(n)) =
∑
p≤x

ˆ

1

p
+O

ˆ

1

x

˙˙

= log log x+O(1).

by Mertens’ second theorem [35, Theorem 427]. Assuming that the events p | n are

mutually uncorrelated for distinct primes p, so that {Xp(n)}p≤x is a set of independent

random variables, we see that the variance of ω(n) is

Var(ω(n)) =
∑
p≤x

Var(Xp(n)) =
∑
p≤x

ˆ

1

p

ˆ

1− 1

p

˙

+O

ˆ

1

x

˙˙

= log log x+O(1),

since

Var(Xp(n)) = E(Xp(n)
2)− (E(Xp(n)))

2 =
1

p

ˆ

1− 1

p

˙

+O

ˆ

1

x

˙

.

The central limit theorem for independent random variables then “implies” that as

9



1.2 The Weighted Erdős–Kac Theorems

x→ ∞, the distribution of

ω(n)− log log x
?
log log x

(1.2.3)

approaches the standard Gaussian distribution. This heuristic for (1.2.1) resembles

in spirit that given by Kac. However, as we have seen in Section 1.1, the events

p | n are in fact far from being mutually uncorrelated, especially for primes p that

are relatively large compared to x, and the effect of such correlation on the limiting

distribution of (1.2.3) remains to be determined. Having obtained such an elegant

heuristic, which was far from a rigorous proof, Kac gave a lecture at Princeton on the

average number of prime factors of a random integer. Erdős, who was in the audience,

soon interrupted and announced that he found a proof. This led to the publication

of [24] on this subject by the two mathematicians, which opened the door to a new

branch of mathematics now called “Probabilistic Number Theory”.

The original proof of the Erdős–Kac theorem by Erdős and Kac used a combination

of the central limit theorem and Brun’s sieve and is quite complicated. Later, LeVeque

[39, Theorem 1] introduced some modifications to this proof and obtained a quantita-

tive version of (1.2.1) with a rate of convergence given by O(log log log x/
?
log log x).

A different proof, which is also quite involved, makes use of an asymptotic formula of

Selberg [53] for πk(x) uniformly in the range k ≤ log log x+ V
?
log log x to estimate

the number of natural numbers n ≤ x with ω(n) ≤ log log x + V
?
log log x, where

πk(x) counts the number of natural numbers n ≤ x with ω(n) = k. A related ap-

proach was given by Rényi and Turán [49], who actually proved the stronger result,

conjectured by LeVeque [39], that

1

x
·#

{
n ≤ x:

ω(n)− log log n
?
log log n

≤ V

}
= Φ(V ) +O

ˆ

1
?
log log x

˙

(1.2.4)

holds uniformly for all V ∈ R and all x ≥ 3, where the rate of convergenceO(1/
?
log log x)

10



1.2 The Weighted Erdős–Kac Theorems

is best possible in the sense that one cannot replace it by o(1/
?
log log x) without los-

ing uniformity in V . The analytic approach of Rényi and Turán is rather deep. It

requires, among other things, the asymptotics for πk(x) due to Erdős [22] and Sathe

[51], analytic properties of the Riemann zeta-function on the line σ = 1, and the

classical result from probability theory that a distribution is completely determined

by its characteristic function. In order to obtain the optimal rate of convergence in

(1.2.4), they also had to invoke the Berry–Esseen inequality from probability theory.

There is yet a third approach to proving the Erdős–Kac theorem (1.2.1). This

approach, first suggested by Kac [37], is based on the fact that a Gaussian distri-

bution is completely determined by its moments, which follows immediately from [4,

Theorems 30.1, 30.2]. Hence, one can derive (1.2.1) by showing directly that for every

m ∈ N,
1

x

∑
n≤x

pω(n)− log log xq
m = (µm + o(1))(log log x)

m
2 (1.2.5)

as x→ ∞. Here µm is the mth moment of a standard Gaussian distribution given by

µm =


m! /m! ! , if 2 | m,

0, otherwise,

where

m! ! :=

⌊(m−1)/2⌋∏
k=0

(m− 2k)

for every m ∈ N. It is easy to see by Mertens’ theorem [35, Theorem 427] that

the average of ω(n) for n ≤ x is asymptotically log log x, which yields (1.2.5) in the

case m = 1. Turán [59] proved an asymptotic formula in the case m = 2. Early

proofs of (1.2.5) via the method of moments are due to Delange [12] in 1953 and

Halberstam [31] in 1955, both of which are very complicated. Delange’s proof relies

on an asymptotic formula for the partial sum of the reciprocals of positive integers

11



1.2 The Weighted Erdős–Kac Theorems

n with ω(n) = k, which is intimately related to πk(x). Later, he [13] provided

an elementary proof of (1.2.5) for strongly additive functions, which is similar to but

simpler than that of Halberstam. By exploiting an asymptotic formula for
∑

n≤x z
ω(n)

with z ∈ C, Delange [14] was also able to obtain an asymptotic expansion for the

left-hand side of (1.2.4), improving upon the result of Rényi and Turán. Since πk(x) is

precisely the coefficient of zk in the partial sum of zω(n), his method is also related to

earlier proofs of the Erdős–Kac theorem. On the other hand, Halberstam’s proof was

simplified and rendered more transparent by Billingsley [3] in 1969, who made further

use of ideas and tools from probability theory. In 2007, Granville and Soundararajan

[30] derived asymptotic formulas for the moments which hold uniformly in the range

m ≤ (log log x)1/3. Their method is so flexible that it can also be modified to study

the distribution of values of additive functions in a rather general sieve-theoretic

framework.

More generally, one can study the distribution of values of ω(n) weighted by

certain nonnegative multiplicative functions α(n). Recall that an arithmetic function

α:N → C is said to be multiplicative if α(1) = 1 and α(mn) = α(m)α(n) for all

positive integers m,n ∈ N with gcd(m,n) = 1. For instance, Elliott [21] showed,

based on the Landau–Selberg–Delange method, that

lim
x→∞

˜∑
n≤x

d(n)c

¸−1 ∑
n≤x

ω(n)≤2c log log x+V
?
2c log log x

d(n)c = Φ(V ) (1.2.6)

for any given c ∈ R and V ∈ R, where d(n) denotes the number of positive divisors

of n. Take the case c = 1, for example. For “normal” numbers n ≤ x with about

log log x prime factors, d(n) is near to (log x)log 2, but as is well-known and easy to

see, on average d(n) is more closely modeled by log x. This mismatch occurs because

the average of d(n) is skewed by rare values of n with d(n) abnormally large. For

12



1.2 The Weighted Erdős–Kac Theorems

instance, given any ϵ ∈ (0, 1), we have [35, Theorem 317] d(n) > 2(1−ϵ) logn/log logn for

any large primorial n, i.e., any large positive integer n which is the product of the

first k primes for some k ∈ N. Elliott’s theorem quantifies this mismatch, so that in

particular, numbers n most influential to the average of d(n) have about 2 log log x

prime factors. And in fact, there is a Gaussian distribution with variance
?
2 log log x.

It is this type of theorem that we refer to as a weighted Erdős–Kac theorem. At issue

here is what weights, like d(n)c, can be handled. Of course, one can also consider

other additive functions than ω(n).

Building on the method of Granville and Soundararajan, Khan, Milinovich and

Subedi [38] recently proved

lim
x→∞

˜∑
n≤x

dk(n)

¸−1 ∑
n≤x

ω(n)≤k log log x+V
?
k log log x

dk(n) = Φ(V )

for any given k ∈ N and V ∈ R, where

dk(n) := #
{
(a1, ..., ak) ∈ Nk: a1 · · · ak = n

}
is the k-fold divisor function. Weighted versions of the Erdős–Kac theorem with

general nonnegative multiplicative weight functions α(n) have also been obtained

by Elboim and Gorodetsky [18] and Tenenbaum [57, 58]. Elboim and Gorodetsky

showed, by using a generalization of Billingsley’s argument and a mean-value estimate

due to de la Bretèche and Tenenbaum [11, Theorem 2.1], that if there exist absolute

constants A, θ > 0, d > −1 and r ∈ (0, 2), such that

∑
p≤x

α(p) log p

pd
= θx+O

ˆ

x

(log x)A

˙

13



1.2 The Weighted Erdős–Kac Theorems

and such that α(pν) = O((rpd)ν) for all prime powers pν , then we have

lim
x→∞

˜∑
n≤x

α(n)

¸−1 ∑
n≤x

Ω(n)≤θ log log x+V
?
θ log log x

α(n) = Φ(V )

for any given V ∈ R (see the first part of [18, Theorem 1.1]). This powerful result,

which can be shown to hold with ω(n) in place of Ω(n) by the same argument, clearly

includes the theorem of Elliott and that of Khan, Milinovich and Subedi as special

cases. On the other hand, the theorem of Elboim and Gorodetsky follows from an even

more general and technical result of Tenenbaum [57, Corollary 2.5], which we will not

state here. Tenenbaum’s proof utilizes characteristic functions and his effective mean-

value estimates for a wide class of multiplicative functions, and it provides effective

estimates for the rate of convergence for the distribution functions in consideration.

In Chapter 3 we shall generalize the method used by Granville, Soundararajan,

Khan, Milinovich and Subedi to study the distribution of additive functions f(n)

weighted by nonnegative multiplicative functions α(n) in a wide class M∗, which will

be defined in Section 3.1. Our work is the first to apply this method to prove weighted

Erdős–Kac theorems with general additive functions and multiplicative weights. We

obtained uniform estimates for moments of strength comparable to that of the original

estimate of Granville and Soundararajan. In particular, we showed that under certain

conditions, the distribution of f(n) with respect to the natural probability measure

induced by α(n) is approximately Gaussian, which generalizes the result of Elboim

and Gorodetsky [18] and that of Delange and Halberstam [15]. For technical reasons,

we defer the formulation of our theorems until Section 3.2. Instead, we give here two

interesting applications to the distribution of arithmetic functions of special interests,

which were only studied previously by different methods.

Let τ(n) be the Ramanujan tau function, whose definition and properties can be

14



1.2 The Weighted Erdős–Kac Theorems

found in Section 3.1. The following weighted Erdős–Kac theorem concerning |τ(n)|

was first obtained by Elliott [19] in 2012 using ideas from probability theory.

Theorem 1.2.1. Let

Aτ (x) :=
∑
p≤x

τ(p)̸=0

τ(p)2p−12 log|τ(p)p−11/2|,

Bτ (x) :=
∑
p≤x

τ(p)̸=0

τ(p)2p−12
`

log|τ(p)p−11/2|
˘2
.

Then we have

lim
x→∞

˜∑
n≤x

τ(n)2n−11

¸−1 ∑
n≤x

|τ(n)|n−11/2≤exp
´

Aτ (x)+V
?

Bτ (x)
¯

τ(n)2n−11 = Φ(V ) (1.2.7)

for every fixed V ∈ R.

We remark that the condition τ(p) in the definitions of Aτ (x) and Bτ (x) may be

dropped, since t2 log|t|→ 0 as t → 0. More generally, Theorem 1.2.1 holds with τ(n)

replaced by the Fourier coefficients of any elliptic holomorphic new form of weight at

least 2 (see [20, Theorem 1]). Furthermore, using the Sato–Tate conjecture for non-

CM holomorphic modular forms of weights at least 2, established by Barnet-Lamb,

Geraghty, Harris and Taylor [1], we may estimate Aτ (x) to be (1/4 + o(1)) log log x

and replace Bτ (x) by ((π2/12− 5/8) log log x)1/2.

Along with (1.2.6), Elliott [21] also showed

lim
x→∞

˜∑
n≤x

d(n)2

¸−1 ∑
n≤x

d(n)≤exp
´

4 log 2 log log x+V
?

4(log 2)2 log log x
¯

d(n)2 = Φ(V ). (1.2.8)

15



1.2 The Weighted Erdős–Kac Theorems

If we view the Dirichlet series of d(n)

∑
n≥1

d(n)

ns
= ζ(s)2 =

∏
p

`

1− 2p−s + p−2s
˘−1

as having an Euler product of degree 2, with ζ(s)3 its symmetric square and

∑
n≥1

d(n)2

ns
=
ζ(s)4

ζ(2s)

the analogue of the corresponding Rankin–Selberg L-function, then (1.2.8) may be

viewed as a limiting case of the aforementioned generalization of Theorem 1.2.1 for

the coefficients of an Eisenstein series of weight 1 with respect to the modular group

(see [20]).

Our first application is a simple proof of Theorem 1.2.1 as a corollary of our general

theorems, which we present in Section 3.10.

Our second application concerns the distribution of the number of prime factors

of values of Euler’s totient function φ(n), which is defined explicitly by

φ(n) := n
∏
p|n

ˆ

1− 1

p

˙

.

Recall that Ω(n) denotes the total number of prime factors of n, counting multiplicity.

In [25] (with the proof of a lemma later corrected in [23]), Erdős and Pomerance proved

that for every fixed V ∈ R, we have

lim
x→∞

1

x
·#

{
n ≤ x: Ω(φ(n)) ≤ 1

2
(log log x)2 + V

(log log x)3/2
?
3

}
= Φ(V ). (1.2.9)

Recently, Wang, Wei, Yan and Yi [60, Theorem 1.3] showed that the above holds

with Φ(V ) replaced by δ(S)Φ(V ) if we let n run over those positive integers whose
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1.2 The Weighted Erdős–Kac Theorems

largest prime factors lie in a given subset S of primes of a positive relative natural

density δ(S).

It is also natural to explore weighted variants of (1.2.9) with multiplicative weights

other than 1. In Section 3.11 we give a simple and straightforward extension by show-

ing that if the multiplicative weight α(n) in the class M∗ also satisfies the condition

that α(p) is close to βpσ0−1 for “almost all” primes, where β, σ0 > 0 are absolute

constants, then the distribution of Ω(φ(n)) weighted by α(n) is approximately Gaus-

sian with mean β(log log x)2/2 and variance β(log log x)3/3. The following result is a

special case of this.

Theorem 1.2.2. Given any κ > 0 and c, V ∈ R, we have

lim
x→∞

˜∑
n≤x

dκ(n)
c

¸−1 ∑
n≤x

Ω(φ(n))≤κc(log log x)2/2+V
?

κc(log log x)3/3

dκ(n)
c = Φ(V ). (1.2.10)

And the same holds if dκ(n) is replaced by κω(n) or κΩ(n), where in the latter case, one

has to assume κc < 2.

It is worth mentioning that the condition that α(p) is close to βpσ0−1 for “al-

most all” primes can be relaxed if one is content with abstract expressions of the

means and variances such as Aτ (x) and Bτ (x) in Theorem 1.2.1. For instance, it

can be shown that Ω(φ(n)) still possesses a Gaussian distribution if α(p) is bounded

above and bounded away from 0 for “almost all” primes. Less straightforward gen-

eralizations will require information about the distribution of values of α(p), or the

more tractable function α(n)Λ(n), in arithmetic progressions, where Λ(n) is the von

Mangoldt function. We hope to return to this problem in future research.
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Chapter 2

The Distribution of Rough

Numbers

In this chapter we study the distribution of rough numbers, numbers which are free

of small prime factors. In Section 2.1, we give precise formulations of our results

previewed in Section 1.1. Sections 2.2 and 2.3 are devoted to the proofs of these

results.

Before embarking on our study of rough numbers, we extend the definition of ω(u)

by setting ω(u) = 0 for all u < 1, so that ω(u) satisfies the original delay differential

equation for all u ∈ R\{1, 2}. It is clear that ω(u) has a jump discontinuity at u = 1,

but its right derivative at u = 1 exists. On the other hand, despite the fact that ω(u)

is only continuous but not differentiable at u = 2, both the left and right derivatives

of ω(u) at u = 2 exist. Thus, if we write ω′(1) and ω′(2) for the right derivatives of

ω(u) at u = 1 and u = 2, respectively, then we have (uω(u))′ = ω(u−1) for all u ∈ R.

And we shall adopt this convention throughout the chapter.

18



2.1 Main Results

Section 2.1

Main Results

Our first result is the inequality Φ(x, y) < 0.6x/log y proved in [28], which improves

upon the inequality Φ(x, y) < x/log y in the range y ≤
?
x. More precisely, we have

the following theorem.

Theorem 2.1.1. For all 3 ≤ y ≤
?
x, we have Φ(x, y) < 0.6x/log y. The same

inequality holds when 2 ≤ y ≤
?
x and x ≥ 10.

Theorem 2.1.1 provides a fairly good upper bound for Φ(x, y) in the range 2 ≤

y ≤
?
x, especially considering that the absolute maximum of ω(u) over [2,∞) is

given by M0 = 0.5671432..., attained at the unique critical point u = 2.7632228... of

the function (log(u − 1) + 1)u−1 on [2, 3]. The proof of Theorem 2.1.1 will be given

in the next section.

In Section 2.3 we shall derive an explicit version of (1.1.7), which will then be

applied to obtain numerically explicit estimates with suitable y0 and R(y). Our main

results are summarized in the following theorem.

Theorem 2.1.2. For all x ≥ y ≥ 2, we have

ˇ

ˇ

ˇ

ˇ

ˇ

Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

< 4.403611
x

(log y)3/4
exp

˜

−
c

log y

6.315

¸

.

Conditionally on the Riemann Hypothesis, we have

ˇ

ˇ

ˇ

ˇ

ˇ

Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

< 0.449774
x log y

?
y

for all x ≥ y ≥ 11.
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2.2 The 0.6 Inequality

In view of the asymptotic formula

∏
p≤y

ˆ

1− 1

p

˙

∼ e−γ

log y
,

it is natural to obtain an approximation of Φ(x, y) by the simpler µy(u)x, which

is sometimes more convenient to use. The following consequence of Theorem 2.1.2

provides approximations of this type.

Corollary 2.1.3. For all x ≥ y ≥ 2, we have

|Φ(x, y)− µy(u)x|< 4.434084
x

(log y)3/4
exp

˜

−
c

log y

6.315

¸

.

Conditionally on the Riemann Hypothesis, we have

|Φ(x, y)− µy(u)x|< 0.460680
x log y

?
y

for all x ≥ y ≥ 11.

Section 2.2

The 0.6 Inequality

This section is devoted to the proof of Theorem 2.1.1. The tools which we shall use

are numerically explicit estimates of primes, the inclusion-exclusion principle, and a

numerically explicit version of the upper bound in Selberg’s sieve. The main idea of

the proof may be summarized as follows. For small numerical values of y, the desired

inequality follows by a careful application of the inclusion-exclusion principle. The

case where u is large is then settled by applying our explicit version of Selberg’s upper

bound sieve. After this we are left with the case where u is small. Starting with the
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2.2 The 0.6 Inequality

case 2 ≤ u < 3, which can be handled easily by conventional analytic approaches, we

iterate based on Buchstab’s identity to complete the proof for all small values of u in

consideration.

2.2.1. A Prime Lemma

Let π(x) denote the number of primes p ≤ x. Recall

li(x) :=

∫ x

0

dt

log t
,

where the principal value is taken for the singularity at t = 1. There is a long history

in trying to find the first point when π(x) ≥ li(x), which we now know is beyond 1019.

We prove a lemma based on what is currently known.

Lemma 2.2.1. Let β0 = 2.3× 10−8. For x ≥ 2, we have π(x) < (1 + β0) li(x).

Proof. The result is true for x ≤ 10, so assume x ≥ 10. Consider the Chebyshev

function

θ(x) :=
∑
p≤x

log p.

We use [40, Prop. 2.1], which depends strongly on extensive calculations of Büthe

[8, 9] and Platt [45]. This result asserts in part that θ(x) ≤ x− .05
?
x for 1427 ≤ x ≤

1019 and for larger x, θ(x) < (1+β0)x. One easily checks that θ(x) < x for x < 1427,

so we have

θ(x) < (1 + β0)x, x > 0.

By partial summation, we have

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)

t(log t)2
dt

<
(1 + β0)x

log x
+

∫ 10

2

θ(t)

t(log t)2
dt+ (1 + β0)

∫ x

10

dt

(log t)2
.
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2.2 The 0.6 Inequality

Since
∫
dt/(log t)2 = −t/log t+ li(t), we have

π(x) < (1 + β0) li(x) +

∫ 10

2

θ(t)

t(log t)2
dt+ (1 + β0)(10/log 10− li(10))

< (1 + β0) li(x)− .144. (2.2.1)

This gives the lemma.

After checking for x ≤ 10, we remark that an immediate corollary of (2.2.1) is the

inequality

π(x)− k < (1 + β0)(li(x)− k), 2 ≤ k ≤ π(x), k ≤ 107. (2.2.2)

2.2.2. Presieving: Inclusion–Exclusion Revisited

For small values of y ≥ 2, we can do a complete inclusion–exclusion to compute

Φ(x, y). Let P (y) denote the product of the primes p ≤ y. We have

Φ(x, y) =
∑
d|P (y)

µ(d)
⌊x
d

⌋
. (2.2.3)

As a consequence, we have

Φ(x, y) ≤
∑
d|P (y)

µ(d)
x

d
+

∑
d|P (y)
µ(d)=1

1 = x
∏
p≤y

ˆ

1− 1

p

˙

+ 2π(y)−1. (2.2.4)

We illustrate how this elementary inequality can be used in the case when π(y) =

5, that is, 11 ≤ y < 13. Then the product in (2.2.4) is 16/77 < .207793. The

remainder term in (2.2.4) is 16. And we have

Φ(x, y) < .207793x+ 16 < .6x/log 13
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2.2 The 0.6 Inequality

when x ≥ 613. There remains the problem of dealing with smaller values of x, which

we address momentarily. We apply this method for y < 71.

Table 2.1: Small y.

y interval x bound max
[2, 3) 22 .61035
[3, 5) 51 .57940
[5, 7) 96 .55598
[7, 11) 370 .56634
[11, 13) 613 .55424
[13, 17) 1603 .56085
[17, 19) 2753 .54854
[19, 23) 6296 .55124
[23, 29) 17539 .55806
[29, 31) 30519 .55253
[31, 37) 76932 .55707
[37, 41) 1.6× 105 .55955
[41, 43) 2.9× 105 .55648
[43, 47) 5.9× 105 .55369
[47, 53) 1.4× 106 .55972
[53, 59) 3.0× 106 .55650
[59, 61) 5.4× 106 .55743
[61, 67) 1.2× 107 .55685
[67, 71) 2.4× 107 .55641

Pertaining to Table 2.1, for x beyond the “x bound” and y in the given interval,

we have Φ(x, y) < .6x/log y. The column “max” in Table 2.1 is the supremum of

Φ(x, y)/(x/log y) for y in the given interval and x ≥ y2 with x below the x bound.

The max statistic was computed by creating a table of the integers up to the x bound

with a prime factor ≤ y, taking the complement of this set in the set of all integers

up to the x bound, and then computing (j log p)/n where n is the jth member of the

set and p is the upper bound of the y interval. The max of these numbers is recorded

as the max statistic. The computation was done by Mathematica.

As one can see, for y ≥ 3 the max statistic in Table 2.1 is below .6. However, for

the interval [2, 3) it is above .6. One can compute that it is < .6 once x ≥ 10.
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2.2 The 0.6 Inequality

This method can be extended to larger values of y, but the x bound becomes

prohibitively large. With a goal of keeping the x bound smaller than 3× 107, we can

extend a version of inclusion-exclusion to y < 241 as follows.

First, we “pre-sieve” with the primes 2, 3, and 5. For any x ≥ 0 the number of

integers n ≤ x with gcd(n, 30) = 1 is (4/15)x+ r, where |r|≤ 14/15, as can be easily

verified by looking at values of x ∈ [0, 30]. We change the definition of P (y) to be

the product of the primes in (5, y]. Then for y ≥ 5, we have

Φ(x, y) ≤ 4

15

∑
d|P (y)

µ(d)
x

d
+

14

15
2π(y)−3.

However, it is better to use the Bonferroni inequalities in the form

Φ(x, y) ≤ 4

15

∑
j≤4

∑
d|P (y)
ν(d)=j

(−1)j
x

d
+

4∑
i=0

ˆ

π(y)− 3

i

˙

= xs(y) + b(y),

say, where ν(d) is the number of distinct prime factors of d. (We remark that the ex-

pression b(y) could be replaced with 14
15
b(y).) The inner sums in s(y) can be computed

easily using Newton’s identities, and we see that

Φ(x, y) ≤ .6x/log y for x > b(y)/(.6/log y − s(y)).

We have verified that this x bound is smaller than 30,000,000 for y < 241 and we

have verified that Φ(x, y) < .6x/log y for x up to this bound and y < 241.

This completes the proof of Theorem 2.1.1 for y < 241.

2.2.3. Large u: Selberg’s Sieve

In this section we prove Theorem 2.1.1 in the case that u = log x/log y ≥ 7.5 and

y ≥ 241. Our principal tool is a numerically explicit form of Selberg’s sieve.
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2.2 The 0.6 Inequality

Let A be a set of positive integers a ≤ x and with |A|≈X. Let P = P(y) be a

set of primes p ≤ y. For each p ∈ P we have a collection of α(p) residue classes mod

p, where α(p) < p. Let P = P (y) denote the product of the members of P . Let g

be the multiplicative function defined for numbers d | P where g(p) = α(p)/p when

p ∈ P . We let

V :=
∏
p∈P

(1− g(p)) =
∏
p∈P

ˆ

1− α(p)

p

˙

.

We define rd(A) via the equation

∑
a∈A
d|a

1 = g(d)X + rd(A).

The thought is that rd(A) should be small. We are interested in S(A,P), the number

of those a ∈ A such that a is coprime to P .

We will use Selberg’s sieve as given in [29, Theorem 7.1]. This involves an auxiliary

parameter D < X which can be freely chosen. Let h be the multiplicative function

supported on divisors of P such that h(p) = g(p)/(1 − g(p)). In particular if each

α(p) = 1, then each g(p) = 1/p and h(p) = 1/(p − 1), so h(d) = 1/φ(d) for d | P ,

where φ is Euler’s function. Henceforth we will make this assumption (that each

α(p) = 1). Let

J = JD =
∑
d|P

d<
?
D

h(d), R = RD =
∑
d|P
d<D

τ3(d)|rd(A)|,

where τ3(n) = d3(n) is the number of ordered factorizations n = abc with a, b, c ∈ N.

Selberg’s sieve gives in this situation that

S(A,P) ≤ X/J +R. (2.2.5)
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Note that if D ≥ P 2, then

J =
∑
d|P

h(d) =
∏
p∈P

(1 + h(p)) =
∏
p∈P

(1− g(p))−1 = V −1,

so that X/J = XV . This is terrific, but if D is so large, the remainder term R

in (2.2.5) is also large, making the estimate useless. So, the trick is to choose D

judiciously so that R is under control with J being near to V −1.

Consider the case when each |rd(A)|≤ r for a constant r. In this situation the

following lemma is useful.

Lemma 2.2.2. Suppose that |rd(A)|≤ r for all d < D with d | P (y). For y ≥ 241,

we have

R ≤ r
∑
d<D
d|P (y)

τ3(d) ≤ rD(log y)2
∏
p≤y
p/∈P

ˆ

1 +
2

p

˙−1

.

Proof. Let τ(n) = d(n) be the number of positive divisors of n. Note that

∑
d|P (y)

τ(d)

d
=

∏
p∈P

ˆ

1 +
2

p

˙

=
∏
p≤y

ˆ

1 +
2

p

˙ ∏
p≤y
p/∈P

ˆ

1 +
2

p

˙−1

.

One can show that for y ≥ 241 the first product on the right is smaller than .95(log y)2,

but we will only use the “cleaner” bound (log y)2 (which holds when y ≥ 53). Thus,

∑
d<D
d|P (y)

τ3(d) =
∑
d<D
d|P (y)

∑
j|d

τ(j) ≤
∑
j<D
j|P (y)

τ(j)
∑

d<D/j
d|P (y)

1

< D
∑
j<D
j|P (y)

τ(j)

j
< D(log y)2

∏
p≤y
p/∈P

ˆ

1 +
2

p

˙−1

.

This completes the proof.

To get a lower bound for J in (2.2.5) we proceed as in [29, Section 7.4]. Recall
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2.2 The 0.6 Inequality

that we are assuming each α(p) = 1 and so h(d) = 1/φ(d) for d | P .

Let

I =
∑
d≥

?
D

d|P

1

φ(d)
,

so that I + J = V −1. Hence

J = V −1 − I = V −1(1− IV ), (2.2.6)

so we want an upper bound for IV . Let ε be arbitrary with ε > 0. We have

I < D−ε
∑
d|P

d2ε

φ(d)
= D−ε

∏
p∈P

ˆ

1 +
p2ε

p− 1

˙

,

and so, assuming each α(p) = 1,

IV < D−ε
∏
p∈P

ˆ

1 +
p2ε − 1

p

˙

=: f(D,P , ε). (2.2.7)

In particular, if y ≥ 241 and each |rd(A)|≤ r, then

S(A,P) ≤ XV p1− f(D,P , ε)q−1 + rD(log y)2
∏
p≤y
p/∈P

ˆ

1 +
2

p

˙−1

. (2.2.8)

We shall choose D so that the remainder term is small in comparison to XV , and

once D is chosen, we shall choose ε so as to minimize f(D,P , ε).

The case when y ≤ 500,000 and u ≥ 7.5. We wish to apply (2.2.8) to estimate

Φ(x, y) when u ≥ 7.5, that is, when x ≥ y7.5. We have a few choices for A and P .

The most natural choice is that A is the set of all integers ≤ x, X = x, and P is

the set of all primes ≤ y. In this case, each |rd(A)|≤ 1, so that we can take r = 1
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in (2.2.8). Instead we choose (as in the last section) A as the set of all integers ≤ x

that are coprime to 30 and we choose P as the set of primes p with 7 ≤ p ≤ y. Then

X = 4x/15 and one can check that each |rd(A)|≤ 14/15, so we can take r = 14/15

in (2.2.8). Also, ∏
p≤y
p/∈P

ˆ

1 +
2

p

˙−1

=
3

14
,

when y ≥ 5. With this choice of A and P , (2.2.8) becomes

Φ(x, y) ≤ XV

˜

1−D−ε
∏

7≤p≤y

ˆ

1 +
p2ε − 1

p

˙

¸−1

+
1

5
D(log y)2, (2.2.9)

when y ≥ 241.

Our “target” for Φ(x, y) is .6x/log y. We choose D here so that our estimate for

the remainder term is 1% of the target, namely .006x/log y. Thus, in light of Lemma

2.2.2, we choose

D = .03x/(log y)3.

We have verified that for every value of y ≤ 500,000 and x ≥ y7.5 that the right

side of (2.2.9) is smaller than .6x/log y. Note that to verify this, if p, q are consecutive

primes with 241 ≤ p < q, then S(A,P) is constant for p ≤ y < q, and so it suffices

to show the right side of (2.2.9) is smaller than .6x/log q. Further, it suffices to take

x = p7.5, since as x increases beyond this point with P and ε fixed, the expression

f(D,P , ε) decreases. For smaller values of y in the range, we used Mathematica to

choose the optimal choice of ε. For larger values, we let ε be a judicious constant over

a long interval. As an example, we chose ε = .085 in the top half of the range.

The case when y ≥ 500,000 and u ≥ 7.5. As in the discussion above we have a

few choices to make, namely for the quantities D and ε. First, we choose x = y7.5,
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2.2 The 0.6 Inequality

since the case x ≥ y7.5 follows from the proof of the case of equality. We choose D as

before, namely .03x/(log y)3. We also choose

ε = 1/log y.

Our goal is to prove a small upper bound for f(D,P , ε) given in (2.2.7). We have

f(D,P , ε) < D−ε exp

˜ ∑
7≤p≤y

p2ε − 1

p

¸

.

We treat the two sums separately. First, by Rosser–Schoenfeld [50, Theorems 9,

20], one can show that

−
∑
p≤y

1

p
< − log log y − .26

for all y ≥ 2, so that

−
∑

7≤p≤y

1

p
< − log log y − .26 + 31/30 (2.2.10)

for y ≥ 7. For the second sum we have

∑
7≤p≤y

p2ε−1 = 72ε−1 + (π(y)− 4)y2ε−1 +

∫ y

11

(1− 2ε)(π(t)− 4)t2ε−2 dt.

At this point we use (2.2.2) , so that

1

1 + β0

∑
11≤p≤y

p2ε−1 < (li(y)− 4)y2ε−1 +

∫ y

11

(1− 2ε)(li(t)− 4)t2ε−2 dt

= (li(y)− 4)y2ε−1 − (li(t)− 4)t2ε−1
ˇ

ˇ

ˇ

y

11
+

∫ y

11

t2ε−1

log t
dt

= (li(11)− 4)112ε−1 + li(t2ε)
ˇ

ˇ

ˇ

y

11

= (li(11)− 4)112ε−1 + li(y2ε)− li(112ε),
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2.2 The 0.6 Inequality

and so

1

1 + β0

∑
7≤p≤y

p2ε−1 < 72ε−1 + (li(11)− 4)112ε−1 + li(y2ε)− li(112ε). (2.2.11)

There are a few things to notice, but we will not need them. For example, li(y2ε) =

li(e2) and li(112ε) ≈ log(112ε − 1) + γ.

Let S(y) be the sum of the right side of (2.2.10) and 1 + β0 times the right side

of (2.2.11). Then

f(D,P , ε) < D−εeS(y).

The expression XV in (2.2.9) is

x
∏
p≤y

ˆ

1− 1

p

˙

.

We know from [40] that this product is < e−γ/log y for y ≤ 2 × 109, and for larger

values of y, it follows from [17, Theorem 5.9] (which proof follows from [17, Theorem

4.2] or [6, Corollary 11.2]) that it is < (1 + 2.1× 10−5)e−γ/log y. We have

Φ(x, y) ≤ XV p1− f(D,P , ε)q−1 +
1

5
D(log y)2 (2.2.12)

<
`

1 + 2.1× 10−5
˘ x

eγ log y

`

1−D−εeS(y)
˘−1

+
.006x

log y
.

We have verified that (1−D−εeS(y))−1 is decreasing in y, and that at y = 500,000 it

is smaller than 1.057. Thus, (2.2.12) implies that

Φ(x, y) < (1 + 2.1× 10−5)
1.057x

eγ log y
+
.006x

log y
<
.5995x

log y
.

This concludes the case of u ≥ 7.5.
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2.2 The 0.6 Inequality

2.2.4. The Case 2 ≤ u < 3: Analytic Methods

In this section we prove that Φ(x, y) < .575x/log y when u ∈ [2, 3), that is, when

y2 ≤ x < y3, subject to the constraint y ≥ 241.

For small values of y, we calculate the maximum of Φ(x, y)/(x/log y) for y2 ≤ x <

y3 directly, as we did in Section 2.2.2 when we checked below the x bounds in Table

2.1 and the bound 3× 107. We have done this for 241 ≤ y ≤ 1100, and in this range

we have

Φ(x, y) < .56404
x

log y
, y2 ≤ x < y3, 241 ≤ y ≤ 1100.

Suppose now that y > 1100 and y2 ≤ x < y3. We have

Φ(x, y) = π(x)− π(y) + 1 +
∑

y<p≤x1/2

(π(x/p)− π(p) + 1). (2.2.13)

Indeed, if n is counted by Φ(x, y), then n has at most 2 prime factors (counted with

multiplicity), so n = 1, n is a prime in (y, x] or n = pq, where p, q are primes with

y < p ≤ q ≤ x/p.

Let pj denote the jth prime. Note that

∑
p≤t

π(p) =
∑

j≤π(t)

j =
1

2
π(t)2 +

1

2
π(t).

Thus, ∑
y<p≤x1/2

(π(p)− 1) =
1

2
π(x1/2)2 − 1

2
π(x1/2)− 1

2
π(y)2 +

1

2
π(y),

and so

Φ(x, y) = π(x)−M(x, y) +
∑

y<p≤x1/2

π(x/p), (2.2.14)

where

M(x, y) :=
1

2
π(x1/2)2 − 1

2
π(x1/2)− 1

2
π(y)2 +

3

2
π(y)− 1.
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We use Lemma 2.2.1 on various terms in (2.2.14). In particular, we have (assuming

y ≥ 5)

Φ(x, y) < (1 + β0) li(x) +
∑

y<p≤x1/2

(1 + β0) li(x/p)−M(x, y). (2.2.15)

Via partial summation, we have

∑
y<p≤x1/2

li(x/p) = x1/2 li(x1/2)
∑

y<p≤x1/2

1

p

−
∫ x1/2

y

ˆ

li(x/t)− x/t

log(x/t)

˙ ∑
y<p≤t

1

p
dt.

(2.2.16)

For 1100 ≤ t ≤ 104 we have checked numerically using Mathematica that

0 <
∑
p≤t

1

p
− log log t−B < .00624,

where B = .261497 . . . is the Meissel–Mertens constant. Further, for 104 ≤ t ≤ 106,

0 <
∑
p≤t

1

p
− log log t−B < .00161.

(The lower bounds here follow as well from [50, Theorem 20].) It thus follows for

1100 ≤ y ≤ 104 that

∑
y<p≤x1/2

1

p
< log

log(x1/2)

log y
+ β1,

∑
y<p≤t

1

p
> log

log t

log y
− β1, (2.2.17)

where β1 = .00624. Now suppose that y ≥ 104. Using [17, Eq. (5.7)] and the value
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2.2 The 0.6 Inequality

4.4916 for “η3” from [6, Table 15], we have that

ˇ

ˇ

ˇ

ˇ

ˇ

∑
p≤t

1

p
− log log t−B

ˇ

ˇ

ˇ

ˇ

ˇ

< 1.9036/(log t)3, t ≥ 106.

Thus, (2.2.17) continues to hold for y ≥ 104 with .00624 improved to .00322. We thus

have from (2.2.16)

∑
y<p≤x1/2

li(x/p) < x1/2 li(x1/2)

ˆ

log
log(x1/2)

log y
+ β1

˙

−
∫ x1/2

y

ˆ

li(x/t)− x/t

log(x/t)

˙ ˆ

log
log t

log y
− β1

˙

dt.

(2.2.18)

Let R(t) = (1 + β0) li(t)/(t/log t), so that R(t) → 1 + β0 as t→ ∞. We write the

first term on the right side of (2.2.15) as

x

u log y
R(x) =

R(yu)

u

x

log y
,

and note that the first term on the right of (2.2.18) is less than

R(yu/2)
2

u
(log(u/2) + β1)

x

log y
.

For the expression 1
2
π(x1/2)2 − 1

2
π(x1/2) in M(x, y) we use the inequality π(t) >

t/log t+ t/(log t)2 when t ≥ 599, which follows from [2, Lemma 3.4] and a calculation

(also see [17, Corollary 5.2]). Further, we use π(y) ≤ R(y)y/log y for the rest of

M(x, y).

For 1100 ≤ y ≤ 104, we take β1 = .00624. Using these estimates and numerical

integration for the integral in (2.2.18) we find that

Φ(x, y) < .575
x

log y
, 1100 ≤ y ≤ 104, y2 ≤ x < y3.
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For y ≥ 104, we take β1 = .00322. Observe that

li(t) =
t

log t
+

t

log2 t
+

2t

log3 t
+ 6

∫ t

0

dv

(log v)4
>

t

log t
+

t

log2 t
+

2t

log3 t

for t ≥ 28.5. Applying this inequality and (2.2.17) to the integral in (2.2.16), we see

that this integral is bounded below by

∫ x1/2

y

x/t

log2(x/t)

ˆ

log
log t

log y
− β1

˙

dt+ 2

∫ x1/2

y

x/t

log3(x/t)

ˆ

log
log t

log y
− β1

˙

dt.

(2.2.19)

Since ∫ x1/2

y

x/t

(log(x/t))2
dt =

x

log(x/t)

ˇ

ˇ

ˇ

ˇ

ˇ

x1/2

t=y

=

ˆ

2

u
− 1

u− 1

˙

x

log y
,

and

∫ x1/2

y

x/t

(log(x/t))2
log

log t

log y
dt = x

ˆ

1

log(x/t)
log

log t

log y
+

1

log x
log

log(x/t)

log t

˙

ˇ

ˇ

ˇ

ˇ

ˇ

x1/2

t=y

=

ˆ

log(u/2)

u/2
− log(u− 1)

u

˙

x

log y

by partial integration, the first integral in (2.2.19) is equal to A(u)x/log y, where

A(u) :=
log(u/2)

u/2
− log(u− 1)

u
− β1

ˆ

2

u
− 1

u− 1

˙

.

Similarly, we observe that

∫ x1/2

y

x/t

(log(x/t))3
dt =

x

2 log2(x/t)

ˇ

ˇ

ˇ

ˇ

ˇ

x1/2

t=y

=

ˆ

4

u2
− 1

(u− 1)2

˙

x

2 log2 y
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and that

∫ x1/2

y

x/t

(log(x/t))3
log

log t

log y
dt

=
x

2

ˆ

1

log2(x/t)
log

log t

log y
+

1

log2 x
log

log(x/t)

log t
− 1

(log x)(log(x/t))

˙

ˇ

ˇ

ˇ

ˇ

ˇ

x1/2

t=y

=

ˆ

4

u2
log

u

2
− log(u− 1) + 2

u2
+

1

u(u− 1)

˙

x

2 log2 y
.

Hence, the second integral in (2.2.19) is equal to B(u)x/(2 log2 y), where

B(u) :=
4

u2
log

u

2
− log(u− 1) + 2

u2
+

1

u(u− 1)
− β1

ˆ

4

u2
− 1

(u− 1)2

˙

.

Using these identities for the integrals in (2.2.19) and estimating the other terms as

before, we verify that

Φ(x, y) < .572
x

log y
, y > 104, y2 ≤ x < y3.

2.2.5. Iteration and Completion of the Proof of Theorem 2.1.1

Suppose k is a positive integer and we have shown that

Φ(x, y) ≤ ck
x

log y
(2.2.20)

for all y ≥ 241 and u = log x/log y ∈ [2, k). We can try to find some ck+1 not much

larger than ck such that

Φ(x, y) ≤ ck+1
x

log y
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for y ≥ 241 and u < k + 1. We start with c3, which by the results of the previous

section we can take as .56404 when 241 ≤ y < 1100 and as .575 when y ≥ 1100. In

this section we attempt to find ck for k ≤ 8 such that c8 < .6. It would then follow

from Section 2.2.3 that Φ(x, y) < .6x/log y for all u ≥ 2 and y ≥ 241.

Suppose that (2.2.20) holds and that y is such that x1/(k+1) < y ≤ x1/k. We have

Φ(x, y) = Φ(x, x1/k) +
∑

y<p≤x1/k

Φ(x/p, p−), (2.2.21)

where p− can be taken to be any real number in (p− 1, p). Indeed the sum counts all

n ≤ x with least prime factor p ∈ (y, x1/k], and Φ(x, x1/k) counts all n ≤ x with least

prime factor > x1/k. As we have seen, it suffices to deal with the case when y = q−0

for some prime q0.

Note that if (2.2.20) holds, then it also holds for y = x1/k. Indeed, if y is a prime,

then Φ(x, y) = Φ(x, y+ ϵ) for all 0 < ϵ < 1, and in this case Φ(x, y) ≤ ckx/log(y+ ϵ),

by hypothesis. Letting ϵ → 0 shows we have Φ(x, y) ≤ ckx/log y as well. If y is not

prime, then for all sufficiently small ϵ > 0, we again have Φ(x, y) = Φ(x, y + ϵ) and

the same proof works.

Thus, we have (2.2.20) holding for all of the terms on the right side of (2.2.21).

This implies that

Φ(x, q−0 ) ≤ ckx

˜

1

log(x1/k)
+

∑
q0≤p≤x1/k

1

p log p

¸

. (2.2.22)

We expect that the parenthetical expression here is about the same as 1/log q0, so let

us try to quantify this. Let

ϵk(q0) = max

{
−1

log q0
+

1

log(x1/k)
+

∑
q0≤p≤x1/k

1

p log p
: yk < x ≤ yk+1

}
.
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Let q1 be the largest prime ≤ x1/k, so that

ϵk(q0) = max

{
−1

log q0
+

1

log q1
+

∑
q0≤p≤q1

1

p log p
: q0 ≤ q1 ≤ q

1+1/k
0

}
.

It follows from (2.2.22) that

Φ(x, y) = Φ(x, q−0 ) ≤ ckx

ˆ

1

log q0
+ ϵk(q0)

˙

=
ckx

log y
(1 + ϵk(q0) log q0).

Note that as k grows, ϵk(q0) is non-increasing since the max is over a smaller set

of primes q1. Thus, we have the inequality

Φ(x, q−0 ) ≤ c3(1 + ϵ3(q0) log q0)
j x

log y
, x1/3 < q0 ≤ x1/(3+j). (2.2.23)

Thus, we would like

c3(1 + ϵ3(q0) log q0)
5 < .6 (2.2.24)

We have checked (2.2.24) numerically for primes q0 < 1000 and it holds for q0 ≥

241.

This leaves the case of primes > 1000. We have the identity

∑
q0≤p≤q1

1

p log p

=
−θ(q−0 )
q0(log q0)2

+
θ(q1)

q1(log q1)2
+

∫ q1

q0

θ(t)

ˆ

1

t2(log t)2
+

2

t2(log t)3

˙

dt,

via partial summation, where θ is again Chebyshev’s function. First assume that

q1 < 1019. Then using [9, Theorem 2], we have θ(t) ≤ t, so that

∑
q0≤p≤q1

1

p log p
<
q0 − θ(q−0 )

q0(log q0)2
+

1

log q0
− 1

log q1
.
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We also have [8], [9] that q0 − θ(q−0 ) < 1.95
?
q0, so that one can verify that

ϵ3(q0) <
1.95

?
q0(log q0)2

and so (2.2.24) holds for q0 > 1000. It remains to consider the cases when q1 > 1019,

which implies q0 > 1014. Here we use |θ(t) − t|< 3.965t/(log t)2, which is from [17,

Theorem 4.2] or [6, Corollary 11.2]. This shows that (2.2.24) holds here as well,

completing the proof of Theorem 2.1.1.

Section 2.3

Numerically Explicit Versions of de Bruijn’s

Estimate

The purpose of this section is to prove Theorem 2.1.2 and Corollary 2.1.3. The key

to the proofs is an explicit version of (1.1.7) of generic nature, which we shall develop

in Section 2.3.3. For our applications in Section 2.3.4, we shall also need numerically

explicit lower bounds for Φ(x, y) for y in a suitable, wide range, which will be the

focus of Sections 2.3.1 and 2.3.2.

2.3.1. Lower Bounds for Φ(x, y)

Before moving on to the derivation of Theorem 2.1.2, we prove a clean lower bound

for Φ(x, y) which is applicable in a wide range. This lower bound, which is interesting

in itself, will be used in the proof of Theorem 2.1.2 and Corollary 2.1.3 in Section

2.3.4. We start by proving the following result, which provides a numerically explicit

lower bound for the implicit constant in the error term in (1.1.4). It is worth noting

that our method can easily be adapted to yield a numerically explicit upper bound

as well.
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Proposition 2.3.1. Define ∆(x, y) by

Φ(x, y) =
x

log y

ˆ

ω(u) +
∆(x, y)

log y

˙

for 2 ≤ y ≤
?
x. Let y0 = 602. For every positive integer k ≥ 3, we define

∆−
k = ∆−

k (y0) := inf {min(∆(x, y), 0): y ≥ y0 and 2 ≤ u < k} .

Then ∆−
3 > −0.563528, ∆−

4 > −0.887161, and ∆−
k > −0.955421 for all k ≥ 5.

Proof. Let y1 := 2,278, 383. Suppose first that y ≥ y1 and set

G(v) :=
∑

x1/v<p≤
?
x

1

p

for 2 ≤ v ≤ u. By [17, Theorem 5.6]1, we have

ˇ

ˇ

ˇ
G(v)− log

v

2

ˇ

ˇ

ˇ
≤ c1

log2 y
(2.3.1)

for all y ≥ y1, where c1 = 0.4/log y1. We shall also make use of the following inequality

[17, Corollary 5.2]2:

z

log z

ˆ

1 +
c3

log z

˙

≤ π(z) ≤ z

log z

ˆ

1 +
c2

log z

˙

, (2.3.2)

1In [6] it is claimed that the proof of [17, Theorem 4.2] is incorrect due to the application of an
incorrect zero density estimate of Ramaŕe [48, Theorem 1.1]. In a footnote on p. 2299 of the same
paper, the authors state that the bounds asserted in [17] are likely affected for this reason. However,
since they also give a correct proof of [17, Theorem 4.2] (see [6, Corollary 11.2]), one verifies easily
that the proof of [17, Theorem 5.6], which relies only on [17, Theorem 4.2], partial summation, and
numerical computation, remains valid.

2For the same reason mentioned above, it is reasonable to suspect that the bounds given in
[17, Corollary 5.2] are also affected. However, one can verify these bounds without much difficulty.
Indeed, (5.2) of [17, Corollary 5.2] is superseded by [50, Corollary 1], while (5.3) and (5.4) of [17,
Corollary 5.2] follow from [2, Lemmas 3.2–3.4] and direct calculations.
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where c2 = 1+2.53816/log y1 and c3 = 1+2/log y1. We start with the range 2 ≤ u ≤ 3.

In this range, we have

Φ(x, y) = #{n ≤ x:P−(n) > y and Ω(n) ≤ 2}

= π(x)− π(y) + 1 +
∑

y<p≤
?
x

∑
p≤q≤x/p

1

= π(x)− π(y) + 1 +
∑

y<p≤
?
x

(π(x/p)− π(p) + 1),

where Ω(n) denotes the total number of prime factors of n, with multiplicity counted.

Since

∑
y<p≤

?
x

(π(p)− 1) =
∑

π(y)<j≤π(
?
x)

(j − 1) =
π(

?
x)(π(

?
x)− 1)

2
− π(y)(π(y)− 1)

2
,

we see that

π(x)− π(y) + 1−
∑

y<p≤
?
x

(π(p)− 1) > π(x)− π(
?
x)2

2
+
π(

?
x)

2
.

It follows from (2.3.2) that

Φ(x, y) >
x

log x

ˆ

1 +
c3

log x

˙

− x

2 log2
?
x

ˆ

1 +
c2

log
?
x

˙2

+

?
x

2 log
?
x
+

∑
y<p≤

?
x

π(x/p).

(2.3.3)

To handle the sum in (2.3.3), we appeal to (2.3.2) again to arrive at

∑
y<p≤

?
x

π(x/p) ≥
∑

y<p≤
?
x

ˆ

x

p log(x/p)
+

c3x

p log2(x/p)

˙

.
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By partial summation we see that

∑
y<p≤

?
x

1

p log(x/p)
=

1

log x

∫ u

2−

v

v − 1
dG(v) =

1

log y

ˆ

G(u)

u− 1
+

1

u

∫ u

2−

G(v)

(v − 1)2
dv

˙

From (2.3.1) it follows that

G(u)

u− 1
≥ 1

u− 1

ˆ

log
u

2
− c1

log2 y

˙

,

and

∫ u

2−

G(v)

(v − 1)2
dv ≥

∫ u

2

1

(v − 1)2

ˆ

log
v

2
− c1

log2 y

˙

dv

= − 1

u− 1
log

u

2
+

∫ u

2

1

v(v − 1)
dv − c1

log2 y

ˆ

1− 1

u− 1

˙

= − u

u− 1
log

u

2
+ log(u− 1)− c1

log2 y

ˆ

1− 1

u− 1

˙

.

Hence

∑
y<p≤

?
x

x

p log(x/p)
≥ x

log y

ˆ

log(u− 1)

u
− 2c1

u log2 y

˙

=
x

log y

ˆ

ω(u)− 2c1

u log2 y

˙

− x

log x
. (2.3.4)

Similarly, we have

∑
y<p≤

?
x

1

p log2(x/p)
=

1

log2 x

∫ u

2−

ˆ

v

v − 1

˙2

dG(v) =
1

log2 x

ˆ

G(u)u2

(u− 1)2
+ 2

∫ u

2−

vG(v)

(v − 1)3
dv

˙

.

By (2.3.1) we have

G(u)u2

(u− 1)2
≥ u2

(u− 1)2

ˆ

log
u

2
− c1

log2 y

˙

,
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and ∫ u

2−

vG(v)

(v − 1)3
dv ≥

∫ u

2

v

(v − 1)3

ˆ

log
v

2
− c1

log2 y

˙

dv.

Since

∫ u

2

v

(v − 1)3
log

v

2
dv = −

ˆ

1

u− 1
+

1

2(u− 1)2

˙

log
u

2
+

∫ u

2

ˆ

1

v − 1
+

1

2(v − 1)2

˙

dv

v

= − 2u− 1

2(u− 1)2
log

u

2
+

1

2

∫ u

2

ˆ

1

(v − 1)2
+

1

v(v − 1)

˙

dv

= − u2

2(u− 1)2
log

u

2
+

1

2

ˆ

log(u− 1) + 1− 1

u− 1

˙

and ∫ u

2

v

(v − 1)3
dv = − 2u− 1

2(u− 1)2
+

3

2
,

we have

∑
y<p≤

?
x

x

p log2(x/p)
≥ x

log2 x

ˆ

log(u− 1) +
u− 2

u− 1
− 4c1

log2 y

˙

. (2.3.5)

Inserting (2.3.4) and (2.3.5) into (2.3.3) yields

∆(x, y) ≥ g(u)− 2c1
u log y

+
log y

uy3/2
− 1

u2

ˆ

2− c3 +
4c1c3

log2 y
+

8c2
u log y

+
8c22

u2 log2 y

˙

,

where

g(u) :=
c3
u2

ˆ

log(u− 1) +
u− 2

u− 1

˙

.

Using Mathematica we find that ∆−
3 > −0.301223 when y ≥ y1.

Now we proceed to bound ∆−
k for k ≥ 4 recursively when y ≥ y1. Let k ≥ 3 be

arbitrary. It is easily seen that the following variant of Buchstab’s identity (1.1.3)
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holds for any z ∈ [y, x]:

Φ(x, y) = Φ(x, z) +
∑

y<p≤z

Φ(x/p, p−), (2.3.6)

where p− can be taken to be any real number in (p − 1, p). For 3 ≤ k ≤ u < k + 1

and y ≥ y1, we obtain by taking z = x1/3 that

Φ(x, y) = Φ
`

x, x1/3
˘

+
∑

y<p≤x1/3

Φ(x/p, p−). (2.3.7)

We have already shown that

Φ
`

x, x1/3
˘

≥ x

log x1/3

ˆ

ω

ˆ

log x

log x1/3

˙

+
∆−

3

log x1/3

˙

=
3x

log y

ˆ

ω(3)

u
+

3∆−
3

u2 log y

˙

.

(2.3.8)

Note that 2 < log(x/p)/log(p−) < k. Thus, we have

Φ(x/p, p−) ≥ x

p log(p−)

ˆ

ω

ˆ

log(x/p)

log(p−)

˙

+
∆−

k

log(p−)

˙

.

Since ω(u) is continuous on [1,∞), it follows from (2.3.7) and (2.3.8) that

Φ(x, y) ≥ 3x

log y

ˆ

ω(3)

u
+

3∆−
3

u2 log y

˙

+
∑

y<p≤x1/3

x

p log p

ˆ

ω

ˆ

log x

log p
− 1

˙

+
∆−

k

log p

˙

.

(2.3.9)

By partial summation we see that

∑
y<p≤x1/3

1

p log2 p
<

∫ ∞

y

1

t log2 t
dπ(t) = − π(y)

y log2 y
+

∫ ∞

y

log t+ 2

t2 log3 t
π(t) dt,
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which, by (2.3.2), is

< − 1

log3 y

ˆ

1 +
c3

log y

˙

+

∫ ∞

y

log t+ 2

t log4 t

ˆ

1 +
c2
log t

˙

dt

= − 1

log3 y

ˆ

1 +
c3

log y

˙

+
1

2 log2 y
+

c2 + 2

3 log3 y
+

c2

2 log4 y

=
1

log2 y

ˆ

1

2
+

´c2
3
− 1

¯ 1

log y
+

´c2
2
− c3

¯ 1

log2 y

˙

<
1

log2 y

ˆ

1

2
+

´c2
3
− 1

¯ 1

log y

˙

.

Hence ∑
y<p≤x1/3

∆−
k x

p log2 p
≥ ∆−

k x

log2 y

ˆ

1

2
+

´c2
3
− 1

¯ 1

log y

˙

. (2.3.10)

On the other hand, we have

∑
y<p≤x1/3

1

p log p
ω

ˆ

log x

log p
− 1

˙

=
1

log x

∫ u

3−
vω(v − 1) dG(v)

=
1

log x

ˆ∫ u

3

ω(v − 1) dv +

∫ u

3−
vω(v − 1) d

´

G(v)− log
v

2

¯

˙

.

Observe that ∫ u

3

ω(v − 1) dv = uω(u)− 3ω(3)

and that

∫ u

3−
vω(v − 1) d

´

G(v)− log
v

2

¯

= uω(u− 1)
´

G(v)− log
v

2

¯

− 3ω(2)

ˆ

G(3)− log
3

2

˙

−
∫ u

3−

´

G(v)− log
v

2

¯

d(vω(v − 1)).

By [56, (6.23), p. 562] and [56, Theorems III.5.7 & III.6.6], we have, for all v ≥ 3,
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that

d

dv
(vω(v − 1)) = ω(v − 2) + ω′(v − 1) ≥ 1

2
− ρ(v − 1) ≥ 1

2
− ρ(2) = log 2− 1

2
,

d

dv
(vω(v − 1)) ≤ 1 + ρ(v − 1) ≤ 1 + ρ(2) = 2− log 2,

where ρ is the Dickman-de Bruijn function defined to be the unique continuous solu-

tion to the delay differential equation tρ′(t) + ρ(t − 1) = 0 for t ≥ 1, subject to the

initial value condition ρ(t) = 1 for 0 ≤ t ≤ 1. Moreover, we have

lim
v→3−

d

dv
(vω(v − 1)) = lim

v→3−
pω(v − 2) + ω′(v − 1)q = −1

4
.

It follows by (2.3.1) that

∫ u

3−

´

G(v)− log
v

2

¯

d(vω(v − 1)) ≤ c1

log2 y
puω(u− 1)− 3ω(2)q .

Thus we have

∫ u

3−
vω(v − 1) d

´

G(v)− log
v

2

¯

≥ −2c1uω(u− 1)

log2 y
≥ −2c1M0u

log2 y
,

where M0 = 0.5671432.... Hence we have shown that

∑
y<p≤x1/3

x

p log p
ω

ˆ

log x

log p
− 1

˙

≥ x

log y

ˆ

ω(u)− 3ω(3)

u
− 2c1M0

log2 y

˙

. (2.3.11)

Combining (2.3.9), (2.3.10) and (2.3.11), we deduce that

∆(x, y) ≥ 9∆−
3

u2
+

∆−
k

2
− 1

log y

´

2c1M0 −
´c2
3
− 1

¯

∆−
k

¯
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for k ≤ u < k + 1. Therefore, ∆−
k+1 ≥ min(∆−

k , a
−
k ) for all k ≥ 3, where

a−k :=
9∆−

3

k2
+

∆−
k

2
− 1

log y1
·max

´

2c1M0 −
´c2
3
− 1

¯

∆−
k , 0

¯

.

Consequently, we have ∆−
4 > −0.451835 and ∆−

k > −0.480075 for all k ≥ 5.

Suppose now that 602 ≤ y ≤ y1. By [50, Theorem 20] we can replace (2.3.1) with

ˇ

ˇ

ˇ
G(v)− log

v

2

ˇ

ˇ

ˇ
≤ d1

?
y log y

,

where d1 = 2. Moreover, (2.3.2) remains true if we replace c2 and c3 by d2 = 1.2762

and d3 = 1, respectively, according to [17, Corollary 5.2]. With these changes, we run

the same argument used to handle the case y ≥ y1 and get

∆(x, y) > g(u)− 2d1
u

?
y
+

log y

uy3/2
− 1

u2

ˆ

2− d3 +
4d1d3

?
y log y

+
8d2

u log y
+

8d22
u2 log2 y

˙

.

when 2 ≤ u ≤ 3 and

∆(x, y) ≥ 9∆−
3

u2
+

∆−
k

2
− 1

log y

ˆ

2d1M0 log y
?
y

−
ˆ

d2
3

− 1

˙

∆−
k

˙

when 3 ≤ k ≤ u < k + 1, so that we can take

a−k =
9∆−

3

k2
+

∆−
k

2
− 1

log y0
·max

ˆ

2d1M0 log y0
?
y0

−
ˆ

d2
3

− 1

˙

∆−
k , 0

˙

.

As a consequence, we have ∆−
3 > −0.563528, ∆−

4 > −0.887161 and ∆−
k > −0.955421

for all k ≥ 5. This completes the proof of the proposition.
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2.3.2. The Inequality Φ(x, y) > 0.4x/log y

Proposition 2.3.1 allows us to show that the clean inequality Φ(x, y) > 0.4x/log y

holds for all 7 ≤ y ≤ x2/3. In addition to Proposition 2.3.1, we also need a numerical

lower bound for ω(u) on [3,∞).

Lemma 2.3.2. We have ω(u) > 0.549307 for all u ≥ 3.

Proof. Consider first the case u ∈ [3, 4]. Since (tω(t))′ = ω(t − 1) for t ≥ 2 and

ω(t) = (log(t− 1) + 1)/t for t ∈ [2, 3], we have

ω(u) =
1

u

ˆ

log 2 + 1 +

∫ u

3

log(t− 2) + 1

t− 1
dt

˙

for u ∈ [3, 4]. Note that uω′(u) = ω(u− 1)− ω(u) = S(u)/u, where

S(u) :=
u(log(u− 2) + 1)

u− 1
− log 2− 1−

∫ u

3

log(t− 2) + 1

t− 1
dt.

Since

S ′(u) =
1

u− 1

ˆ

log(u− 2) + 1 +
u

u− 2
− u(log(u− 2) + 1)

u− 1
− (log(u− 2) + 1)

˙

=
u(1− (u− 2) log(u− 2))

(u− 2)(u− 1)2
,

we know that S(u) is strictly increasing on [3, u1] and strictly decreasing on [u1, 4],

where u1 = 3.7632228... is the unique solution to the equation (u− 2) log(u− 2) = 1.

But S(3) = 1/2− log 2 < 0 and

S(4) =
log 2 + 1

3
−
∫ 4

3

log(t− 2) + 1

t− 1
dt > 0.

It follows that S(u) has a unique zero u2 ∈ [3, 4]. The numerical value of u2 is given

by u2 = 3.4697488..., according to Mathematica. Hence S(u) < 0 for u ∈ [3, u2)
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and S(u) > 0 for u ∈ (u2, 4]. The same is true for ω′(u), which implies that ω(u) is

strictly decreasing on [3, u2] and strictly increasing on [u2, 4]. Thus, ω(u) ≥ ω(u2) =

0.5608228... for u ∈ [3, 4].

Consider now the case u ∈ [4,∞). It is known [36] that ω(t) satisfies

|ω(t)− e−γ|≤ ρ(t− 1)

t

for all t ≥ 1. Since ρ(t) is strictly decreasing on [4,∞), we have ω(u) ≥ e−γ − ρ(3)/4

for all u ≥ 4. To find the value of ρ(3), we use tρ′(t) + ρ(t − 1) = 0 for t ≥ 1 and

ρ(t) = 1− log t for t ∈ [1, 2] to obtain

ρ(u) = 1− log 2−
∫ u

2

1− log(t− 1)

t
dt

for u ∈ [2, 3]. It follows that

ω(u) ≥ e−γ − 1

4

ˆ

1− log 2−
∫ 3

2

1− log(t− 1)

t
dt

˙

= 0.5493073...

for all u ≥ 4. We have therefore shown that ω(u) > 0.549307 for all u ≥ 3.

We are now ready to prove the asserted inequality Φ(x, y) > 0.4x/log y.

Theorem 2.3.3. We have Φ(x, y) > 0.4x/log y for all 7 ≤ y ≤ x2/3.

Proof. In the range max(7, x2/5) ≤ y ≤ x2/3, we have trivially Φ(x, y) ≥ π(x)−π(y)+

1. By [17, Corollary 5.2] we have

π(x)− π(y) ≥ x

log x

ˆ

1 +
1

log x

˙

− y

log y

ˆ

1 +
1.2762

log y

˙

=

ˆ

1

u

ˆ

1 +
1

log x

˙

− y

x

ˆ

1 +
1.2762u

log x

˙˙

x

log y

>

ˆ

2

5

ˆ

1 +
1

log x

˙

− 1

x1/3

ˆ

1 +
3.1905

log x

˙˙

x

log y
> 0.4

x

log y
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whenever x ≥ 41,217. Furthermore, we have verified Φ(x, y) > 0.4x/log y for max(7, x2/5) ≤

y ≤ x2/3 with x ≤ 41,217 using Mathematica. Hence, Φ(x, y) > 0.4x/log y holds in

the range max(7, x2/5) ≤ y ≤ x2/3.

Consider now the case max(x1/3, 7) ≤ y ≤ x2/5. Following the proof of Proposition

2.3.1, we have

Φ(x, y) = π(x)− π(y) + 1 +
∑

y<p≤
?
x

(π(x/p)− π(p) + 1)

= π(x)−M(x, y) +
∑

y<p≤x1/2

π(x/p), (2.3.12)

where

M(x, y) :=
1

2
π

`?
x

˘2 − 1

2
π

`?
x

˘

− 1

2
π(y)2 +

3

2
π(y)− 1.

To handle the sum in (2.3.12), we appeal to Theorem 5 and its corollary from [50] to

arrive at

G(v)− log
v

2
> − 1

2 log2
?
x
− 1

log2 y
≥ − 33

25 log2 y

in the range max(x1/3, 7) ≤ y ≤ x2/5. By [50, Corollary 1] we have

∑
y<p≤x1/2

π(x/p) > x
∑

y<p≤x1/2

1

p log(x/p)
=

x

log x

∫ u

2−

v

v − 1
dG(v),

provided that x ≥ 289. The right-hand side of the above can be estimated in the

same way as in the proof of Proposition 2.3.1, so we obtain

∑
y<p≤

?
x

π(x/p) >
x

log y

ˆ

ω(u)− 66

25u log2 y

˙

− x

log x
.
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On the other hand, we see by [17, Corollary 5.2] and [50, Corollary 2] that

π(x)−M(x, y) > π(x)− 1

2
π

`?
x

˘2 ≥ x

log x

ˆ

1 +
1

log x

˙

− 25x

8 log2 x
=

x

log x
− 17x

8 log2 x
.

for x ≥ 1142. Collecting the estimates above and using the inequality ω(u) ≥

ω(5/2) = 2(ln(3/2) + 1)/5 for u ∈ [5/2, 3], we find that

Φ(x, y) >
ω(5/2)x

log y
− 17x

8 log2 x
− 66x

25u log3 y
≥ ω(5/2)x

log y
− 17x

50 log2 y
− 132x

125 log3 y
> 0.4

x

log y

for all max(46, x1/3) ≤ y ≤ x2/5. For x1/3 ≤ y ≤ x2/5 with 7 ≤ y ≤ 46, we have

verified the inequality Φ(x, y) > 0.4x/log y directly through numerical computation.

Next, we consider the range 7 ≤ y < x1/3. By Proposition 2.3.1 and Lemma 2.3.2

we have

Φ(x, y) >
x

log y

ˆ

0.549307− 0.955421

log y

˙

> 0.4
x

log y
,

provided that y ≥ 602. To deal with the range 7 ≤ y ≤ min(x1/3, 602), we follow

the inclusion-exclusion technique used in Section 2.2.2. For any integer n ≥ 1, let

ν(n) denote the number of distinct prime factors of n as before. We start by “pre-

sieving” with the primes 2, 3, and 5: for any x ≥ 1 the number of integers n ≤ x

with gcd(n, 30) = 1 is (4/15)x + rx, where |rx|≤ 14/15. Let P5(y) be the product of

the primes in (5, y]. Then we have by the Bonferroni inequalities that

Φ(x, y) ≥
∑

d|P5(y)
ν(d)≤3

µ(d)

ˆ

4

15
· x
d
+ rx/d

˙

≥ a(y)x− b(y),
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where

a(y) :=
4

15

∑
d|P5(y)
ν(d)≤3

µ(d)

d
=

4

15

3∑
j=0

(−1)j
∑

d|P5(y)
ν(d)=j

1

d
,

b(y) :=
14

15

3∑
j=0

ˆ

π(y)− 3

j

˙

.

By Newton’s identities, the inner sum in the definition of a(y) can be represented

in terms of the power sums of 1/p over all primes 5 < p ≤ y. Thus, we have

Φ(x, y) > 0.4x/log y whenever a(y) > 0.4/log y and x > b(y)/(a(y)−0.4/log y). Using

Mathematica, we find that the inequality Φ(x, y) > 0.4x/log y holds for 7 ≤ y ≤ 602

and x ≥ 13,160,748. Finally, we have verified the inequality Φ(x, y) > 0.4x/log y

directly for 7 ≤ y ≤ x1/3 with x ≤ 13,160,748 by numerical calculations, completing

the proof of our theorem.

Remark 2.3.1. Note that for y ∈ [5, 7) we have

Φ(x, y) ≥ 4

15
x− 14

15
> 0.4

x

log 5
≥ 0.4

x

log y
,

provided that x ≥ 52. Combined with Theorem 2.3.3 and numerical examination of

the case 11 ≤ x ≤ 52, this implies that the inequality Φ(x, y) > 0.4x/log y holds in

the slightly larger range 5 ≤ y ≤ x2/3 if one assumes x ≥ 41.

2.3.3. The General Approach

To prove Theorem 2.1.2, we shall first develop an explicit version of (1.1.7) with a

general R(y), following [10], where R(y) is a positive decreasing function satisfying

the same conditions described in the introduction. Suppose that y0 ≥ 3. For each
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z ≥ 2, put

Q(z) :=
∏
p≤z

ˆ

1− 1

p

˙

.

We start by estimating Q(y) for y ≥ y0. Using a Stieltjes integral, we may write

log
Q(z)

Q(y)
=

∫ z

y

log
`

1− t−1
˘

d li(y) +

∫ z

y

log
`

1− t−1
˘

d(π(y)− li(t)), (2.3.13)

where z ≥ y ≥ y0. The first integral on the right-hand side of the above is equal to

∫ z

y

log
`

1− t−1
˘ dt

log t
= − log

log z

log y
+

∫ z

y

`

t−1 + log
`

1− t−1
˘˘ dt

log t
.

Since

− 1

2t(t− 1)
< t−1 + log

`

1− t−1
˘

< 0

for all t ≥ y0, we have

−1

2

∫ ∞

y

dt

t(t− 1) log t
<

∫ z

y

`

t−1 + log
`

1− t−1
˘˘ dt

log t
< 0.

But a change of variable shows that

∫ ∞

y

dt

t(t− 1) log t
=

∫ ∞

1

dt

t(yt − 1)
≤ 1

y − 1

∫ ∞

1

dt

t2
=

1

y − 1
,

where we have used the inequality yt − 1 ≥ (y − 1)t for t ≥ 1 and y ≥ y0. It follows

that

− 1

2(y − 1)
≤

∫ z

y

log
`

1− t−1
˘

d li(y) + log
log z

log y
< 0. (2.3.14)
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Now we estimate the second integral on the right-hand side of (2.3.13). By (1.1.5)

and partial integration we have

ˇ

ˇ

ˇ

ˇ

∫ z

y

log
`

1− t−1
˘

d(π(y)− li(t))

ˇ

ˇ

ˇ

ˇ

≤ log
`

1− y−1
˘−1 y

log y
R(y) + log

`

1− z−1
˘−1 z

log z
R(z)

+

∫ z

y

|π(t)− li(t)|
t(t− 1)

dt.

Using (1.1.6) we see that

∫ z

y

|π(t)− li(t)|
t(t− 1)

dt ≤ C0(y0)y0
y0 − 1

R(y).

It is clear that the function

log
`

1− t−1
˘−1 t

log t
=

1

log t

∞∑
n=0

t−n

n+ 1

is strictly decreasing for t ∈ (1,∞). Since R(t) is decreasing on [y0,∞), we find that

ˇ

ˇ

ˇ

ˇ

∫ z

y

log
`

1− t−1
˘

d(π(y)− li(t))

ˇ

ˇ

ˇ

ˇ

≤
ˆ

2 log
`

1− y−1
0

˘−1 y0
log y0

+
C0(y0)y0
y0 − 1

˙

R(y).

Combining this inequality with (2.3.13) and (2.3.14) yields

−C2(y0)R(y) ≤ log
Q(z)

Q(y)
+ log

log z

log y
≤ C1(y0)R(y) (2.3.15)

for z ≥ y ≥ y0, where

C1(y0) = 2 log
`

1− y−1
0

˘−1 y0
log y0

+
C0(y0)y0
y0 − 1

,

C2(y0) = C1(y0) + sup
t≥y0

1

2(t− 1)R(t)
.
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Exponentiating (2.3.15) we obtain

−C4(y0)R(y) ≤
Q(z) log z

Q(y) log y
− 1 ≤ C3(y0)R(y) (2.3.16)

for z ≥ y ≥ y0, where

C3(y0) = sup
t≥y0

exp(C1(y0)R(t))− 1

R(t)
=

exp(C1(y0)R(y0))− 1

R(y0)
,

C4(y0) = sup
t≥y0

1− exp(−C2(y0)R(t))

R(t)
= C2(y0).

As a consequence, we have by letting z → ∞ in (2.3.16) and using the fact that

Q(z) log z → e−γ as z → ∞, that

eγ log y(1− C4(y0)R(y)) ≤
1

Q(y)
≤ eγ log y(1 + C3(y0)R(y)). (2.3.17)

Similarly, we derive from (2.3.15) that

e−γ

log y
(1− C6(y0)R(y)) ≤ Q(y) ≤ e−γ

log y
(1 + C5(y0)R(y)) (2.3.18)

for y ≥ y0, where

C5(y0) = sup
t≥y0

exp(C2(y0)R(t))− 1

R(t)
=

exp(C2(y0)R(y0))− 1

R(y0)
,

C6(y0) = sup
t≥y0

1− exp(−C1(y0)R(t))

R(t)
= C1(y0).

For x ≥ y ≥ 2, we define

ψ(x, y) :=
Φ(x, y)

xQ(y)
.

We then need to estimate η(x, y) = ψ(x, y)− λ(x, y), where λ(x, y) := eγµy(u) log y.

For 1 ≤ u ≤ 2 this can be done straightforward. Indeed, we have Φ(x, y) = π(x) −
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π(y) + 1 and ω(u) = 1/u when 1 ≤ u ≤ 2, so that

η(x, y) =
π(x)− π(y) + 1

xQ(y)
− eγ log y

∫ u

1

t−1yt−u dt.

Note that

ˇ

ˇ

ˇ

ˇ

π(x)− π(y)− x

∫ u

1

t−1yt−u dt

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

π(x)− π(y)−
∫ x

y

dt

log t

ˇ

ˇ

ˇ

ˇ

≤
ˆ

x

log x
+

y

log y

˙

R(y).

From (2.3.17) it follows that |η(x, y)|≤ eγαy(u)R(y) for y ≥ y0 and u ∈ [1, 2], where

αy(u) :=
log y

yuR(y)
+C3(y0)

ˆ

log y

yu
+ log y

∫ u

1

t−1yt−u dt

˙

+(1+C3(y0)R(y))

ˆ

1

u
+ y1−u

˙

.

Integration by parts enables us to write

log y

∫ u

1

t−1yt−u dt =
1

u
− y1−u +

∫ u

1

t−2yt−u dt

for y ≥ y0. Hence |η(x, y)|≤ eγη1(y)R(y) for y ≥ y0 and u ∈ [1, 2], where

η1(y) := sup
t≥y

log t

tR(t)
+ max

u∈[1,2]

ˆ

C3(y0)Iy(u) + (1 + C3(y0)R(y))

ˆ

1

u
+ y1−u

˙˙

(2.3.19)

with

Iy(u) :=
1

u
+

∫ u

1

t−2yt−u dt. (2.3.20)

We remark that Iy(u) is strictly decreasing on [1, 2] and hence satisfies Iy(u) < 1 for

u ∈ (1, 2], since its derivative is

I ′y(u) = −
∫ u

1

t−2yt−u log y dt < 0.
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Thus, (2.3.19) simplifies to

η1(y) = sup
t≥y

log t

tR(t)
+ C3(y0) + 2(1 + C3(y0)R(y)). (2.3.21)

Suppose now that y ≥ y0 and u ≥ 2. From (2.3.6) it follows that

ψ(x, y) = ψ(x, z)
Q(z)

Q(y)
+

∑
y<p≤z

ψ(x/p, p−) · 1
p

∏
y<q<p

ˆ

1− 1

q

˙

, (2.3.22)

where z ≥ y ≥ y0. Put h := log z/log y ≥ 1 and

Hy(v) :=
∑

y<p≤yv

1

p

∏
y<q<p

ˆ

1− 1

q

˙

(2.3.23)

for v ≥ 1. Then we have Hy(v) = 1 − Q(yv)/Q(y). By partial summation, we see

that (2.3.22) becomes

ψ(x, y) = ψ(yu, yh)(1−Hy(h)) +

∫ h

1

ψ(yu−v, (yv)−) dHy(v). (2.3.24)

By (2.3.16) we have

|Hy(v)− 1 + v−1|≤ C7(y0)R(y),

where C7(y0) := max(C3(y0), C4(y0)). Thus, one can think of 1 − v−1 as a smooth

approximation to Hy(v). Since we also expect λ(x, y) to be a smooth approximation

to ψ(x, y), in view of (2.3.24) it is reasonable to expect

E1(h; y, u) := λ(yu, y)− λ(yu, yh)h−1 −
∫ h

1

λ(yu−v, yv)v−2 dv

to be small in size as a function of y. This can be easily verified when 1 ≤ h ≤ u/2.
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Following de Bruijn [10], we have

∂

∂h
E1(h; y, u) = −h−1 · ∂

∂h
λ(yu, yh) + h−2λ(yu, y)− h−2λ(yu−h, yh). (2.3.25)

Since

λ(yu, yh)

eγ log y
= h

∫ u/h

1

yht−uω(t) dt,

we find

∂

∂h

ˆ

λ(yu, yh)

eγ log y

˙

=

∫ u/h

1

yht−uω(t) dt+h

˜

log y

∫ u/h

1

yht−u(tω(t)) dt− uh−2ω(uh−1)

¸

.

Recall that (tω(t))′ = ω(t − 1) for t ∈ R with the obvious extension ω(t) = 0 for

t < 1. It follows that

log y

∫ u/h

1

yht−u(tω(t)) dt = h−1yht−u(tω(t))

ˇ

ˇ

ˇ

ˇ

u/h

1

− h−1

∫ u/h

1

yht−uω(t− 1) dt

= uh−2ω(uh−1)− h−1yh−u − h−1yh
∫ u/h−1

1

yht−uω(t) dt

= uh−2ω(uh−1)− h−1yh−u −
`

h2eγ log y
˘−1

λ(yu−h, yh).

Hence we have

∂

∂h
λ(yu, yh) = eγ log y

˜∫ u/h

1

yht−uω(t) dt− yh−u

¸

− h−1λ(yu−h, yh)

= h−1λ(yu, yh)− eγyh−u log y − h−1λ(yu−h, yh).

Inserting this in (2.3.25) yields

∂

∂h
E1(h; y, u) = h−1eγyh−u log y.
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Integrating both sides with respect to h and using the initial value condition E1(1; y, u) =

0, we obtain

E1(h; y, u) = eγ log y

∫ h

1

t−1yt−u dt < eγyh−u. (2.3.26)

In what follows, we shall always suppose that 1 ≤ h ≤ u/2. Following de Bruijn

[10], we proceed to show that

E3(h; y, u) := λ(yu, y)− λ(yu, yh)(1−H(h))−
∫ h

1

λ(yu−v, yv) dH(h)

is small in size as a function of y. This is intuitive, because

λ(yu, yh)h−1 −
∫ h

1

λ(yu−v, yv)v−2 dv,

which is a good approximation to λ(yu, y) as we have already demonstrated, can be

thought of as a smooth approximation to

λ(yu, yh)(1−H(h))−
∫ h

1

λ(yu−v, yv) dH(h).

Moreover, we have by (2.3.24) that

η(x, y) = η(yu, yh)(1−Hy(h)) +

∫ h

1

η(yu−v, (yv)−) dHy(v)− E3(h; y, u), (2.3.27)

which will later be used to estimate η(x, y). To estimate E3(h; y, u), let us write

E3(h; y, u) = E1(h; y, u) + E2(h; y, u), where

E2(h; y, u) := −
∫ h

1

λ(yu−v, yv) d
`

H(v)− 1 + v−1
˘

+ (H(h)− 1 + h−1)λ(yu, yh).

Then we expect E2(h; y, u) to be small in size as a function of y. Using (2.3.23) and
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the observation that H(1) = 0, we have

|E2(h; y, u)|≤
ˆ

ˇ

ˇλ(yu, yh)− λ(yu−h, yh)
ˇ

ˇ +

∫ h

1

ˇ

ˇ

ˇ

ˇ

∂

∂v
λ(yu−v, yv)

ˇ

ˇ

ˇ

ˇ

dv

˙

C7(y0)R(y).

(2.3.28)

Note that

λ(yu, yh)− λ(yu−h, yh)

heγ log y
=

∫ u/h

1

yht−uω(t) dt−
∫ u/h

2

yht−uω(t− 1) dt

=

∫ 2

1

yht−uω(t) dt+

∫ u/h

2

yht−u(ω(t)− ω(t− 1)) dt

=

∫ 2

1

t−1yht−u dt−
∫ u/h

2

yht−utω′(t) dt.

By Theorems III.5.7 and III.6.6 in [56] we have

|ω′(t)|≤ ρ(t) ≤ 1

Γ(t+ 1)
(2.3.29)

for all t ≥ 1. It follows that

ˇ

ˇλ(yu, yh)− λ(yu−h, yh)
ˇ

ˇ ≤ heγ log y

˜∫ 2

1

t−1yht−u dt+

∫ u/h

2

yht−utρ(t) dt

¸

.

(2.3.30)

This inequality will later be used in conjunction with the formulas

h log y

∫ 2

1

t−1yht−u dt =
y2h−u

2
− yh−u +

∫ 2

1

t−2yht−u dt (2.3.31)
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and

h log y

∫ u/h

2

yht−utρ(t) dt = uh−1ρ(uh−1)− 2ρ(2)y2h−u −
∫ u/h

2

yht−u(tρ(t))′ dt

≤ uh−1ρ(uh−1)− 2ρ(2)y2h−u +

∫ u/h

2

yht−uρ(t− 1) dt.

(2.3.32)

On the other hand, we have

λ(yu−v, yv)

eγ log y
= v

∫ u/v

2

yvt−uω(t− 1) dt,

which implies that

∂

∂v

ˆ

λ(yu−v, yv)

eγ log y

˙

=

∫ u/v

2

yvt−u(1 + tv log y)ω(t− 1) dt− uv−1ω(uv−1 − 1).

By partial integration, the right side of the above is easily seen to be

−2y2v−u −
∫ u/v

2

yvt−utω′(t− 1) dt.

Hence, we arrive at

∫ h

1

ˇ

ˇ

ˇ

ˇ

∂

∂v
λ(yu−v, yv)

ˇ

ˇ

ˇ

ˇ

dv ≤ eγ log y

˜

2

∫ h

1

y2v−u dv +

∫ h

1

∫ u/v

2

yvt−ut|ω′(t− 1)| dtdv

¸

.

Furthermore, we have by Fubini’s theorem that

∫ h

1

∫ u/v

2

yvt−ut|ω′(t−1)| dtdv =

∫ u/h

2

∫ h

1

yvt−ut|ω′(t−1)| dv dt+
∫ u

u/h

∫ u/t

1

yvt−ut|ω′(t−1)| dv dt,

60



2.3 Numerically Explicit Versions of de Bruijn’s Estimate

the right side of which is easily seen to be

1

log y

˜∫ u/h

2

yht−u|ω′(t− 1)| dt+
∫ u

u/h

|ω′(t− 1)| dt−
∫ u

2

yt−u|ω′(t− 1)| dt

¸

.

It follows that

∫ h

1

ˇ

ˇ

ˇ

ˇ

∂

∂v
λ(yu−v, yv)

ˇ

ˇ

ˇ

ˇ

dv < eγ

˜

y2h−u +

∫ u/h

2

yht−u|ω′(t− 1)| dt+
∫ u

u/h

|ω′(t− 1)| dt

¸

.

(2.3.33)

This estimate together with (2.3.30) will lead us to a good estimate for E2(h; y, u).

Now we derive estimates for E3(h; y, u) that suit our needs. Suppose that k ≤

u < k+1 and take h = hk = u/k, where k ≥ 2 is a positive integer. We first consider

the case k = 2. In view of (2.3.31), we see that (2.3.30) simplifies to

ˇ

ˇλ
`

yu, yh2
˘

− λ
`

yu−h2 , yh2
˘
ˇ

ˇ < eγ
ˆ

1

2
+

∫ 2

1

t−2yt−2
0 dt

˙

= eγIy0(2)

for y ≥ y0 (see (2.3.20) for the definition of Iy0(2)). By (2.3.33) we have

∫ h2

1

ˇ

ˇ

ˇ

ˇ

∂

∂v
λ(yu−v, yv)

ˇ

ˇ

ˇ

ˇ

dv ≤ eγ
ˆ

1 +

∫ 3

2

|ω′(t− 1)| dt
˙

=
3eγ

2
,

since ω′(t) = −1/t2 for t ∈ [1, 2). Combining these estimates with (2.3.26) and

(2.3.28), we obtain E3(h2; y, u) ≤ eγξ2(y0)R(y) for y ≥ y0 and 2 ≤ u < 3, where

ξ2(y0) := max
t≥y0

1

tR(t)
+ C7(y0)

ˆ

Iy0(2) +
3

2

˙

.

Now we handle the case k ≥ 3. From (2.3.29)–(2.3.32) it follows that

∣∣λ (yu, yhk
)
− λ

(
yu−hk , yhk

)∣∣ < eγ
(

1

Γ(k)
+

(
2 log 2− 3

2

)
y2−k +

∫ 2

1

t−2yt−k dt

+

∫ 3

2

yt−k(1− log(t− 1)) dt+

∫ k

3

yt−k dt

Γ(t)

)
,
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where we have used the fact that ρ(t) = 1−log t for t ∈ [1, 2]. By (2.3.29) and (2.3.33)

we have

∫ hk

1

ˇ

ˇ

ˇ

ˇ

∂

∂v
λ(yu−v, yv)

ˇ

ˇ

ˇ

ˇ

dv ≤ eγ
ˆ

y2−k +

∫ 3

2

yt−k dt

(t− 1)2
+

∫ k

3

yt−k dt

Γ(t)
+

∫ k+1

k

dt

Γ(t)

˙

.

Together with (2.3.26) and (2.3.28), these inequalities imply that E3(hk; y, u) ≤

eγξk(y0)R(y) for y ≥ y0 and 3 ≤ k ≤ u < k + 1, where

ξk(y0) : =

(
max
t≥y0

1

tR(t)

)
y2−k
0 + C7(y0)

(
1

(k − 1)!
+

∫ k+1

k

dt

Γ(t)
+

(
2 log 2− 1

2

)
y2−k
0

+

∫ 2

1

t−2yt−k
0 dt+

∫ 3

2

yt−k
0

(
1− log(t− 1) +

1

(t− 1)2

)
dt+ 2

∫ k

3

yt−k
0

dt

Γ(t)

)
.

As a direct corollary, we obtain

∞∑
k =2

ξk(y0) =
y0

y0 − 1
max
t≥y0

1

tR(t)
+ C7(y0)

(
e− 1

2
+

∫ ∞

3

dt

Γ(t)
+

1

y0 − 1

(
2 log 2− 1

+ y0Iy0(2)+

∫ 3

2

yt−2
0

(
1− log(t− 1)+

1

(t− 1)2

)
dt+2

∫ ∞

3

y
{t}
0

dt

Γ(t)

))
,

where we have applied partial summation to derive

∞∑
k=3

∫ k

3

yt−k
0

dt

Γ(t)
=

˜

∞∑
k=3

y−k
0

¸∫ ∞

3

yt0
dt

Γ(t)
−

∫ ∞

3

˜ ∑
3≤k≤t

y−k
0

¸

yt0
dt

Γ(t)

=
y−3
0

1− y−1
0

∫ ∞

3

yt0
dt

Γ(t)
−
∫ ∞

3

yt−3
0 (1− y

−⌊t⌋+2
0 )

1− y−1
0

· dt

Γ(t)

=
1

y0 − 1

∫ ∞

3

y
{t}
0

dt

Γ(t)
.

For computational purposes, we can transform the last integral above by observing

that ∫ ∞

3

y
{t}
0

dt

Γ(t)
=

∫ 1

0

˜

∞∑
n=0

1

(t+ 2) · · · (t+ 2 + n)

¸

yt0
dt

Γ(t+ 2)
.

Let

γ(s, z) :=

∫ z

0

vs−1e−v dv
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be the lower incomplete gamma function, where s ∈ C with ℜ(s) > 0 and z ≥ 0. It

is well known that

γ(s, z) = zse−z

∞∑
n=0

zn

s(s+ 1) · · · (s+ n)
,

from which it follows that

∞∑
n=0

1

(t+ 2) · · · (t+ 2 + n)
= γ(t+ 2, 1)e.

Thus we obtain

∞∑
k =2

ξk(y0) =
y0

y0 − 1
max
t≥y0

1

tR(t)

+ C7(y0)

(
e− 1

2
+

∫ ∞

3

dt

Γ(t)
+

1

y0 − 1

(
2 log 2− 1 + y0Iy0(2)

+

∫ 3

2

yt−2
0

(
1− log(t− 1) +

1

(t− 1)2

)
dt+ 2e

∫ 1

0

yt0
γ(t+ 2, 1)

Γ(t+ 2)
dt

))
.

(2.3.34)

In Mathematica, the function γ(t+ 2, 1) can be evaluated by “Gamma[t+2,0,1]”.

Finally, we are ready to estimate η(x, y). Let

ηk(y) :=
1

eγR(y)
sup

u∈[k,k+1)
t≥y

|η(tu, t)|

for k ≥ 1 and y ≥ y0, where the value of η1(y) is provided by (2.3.21). Using (2.3.27)

and the estimates for E3(hk; y, u) with y ≥ y0 and 2 ≤ k ≤ u < k + 1, we find

ηk(y) ≤ ηk−1(y) + ξk(y0)

for all k ≥ 2 and y ≥ y0, from which we derive

ηk(y) ≤ η1(y) +
k∑

ℓ=2

ξℓ(y0)
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2.3 Numerically Explicit Versions of de Bruijn’s Estimate

for all k ≥ 1 and y ≥ y0. Since η1(y) is decreasing on [y0,∞), we have therefore

shown that

|η(x, y)|≤ eγ

˜

η1(y0) +
∞∑
k=2

ξk(y0)

¸

R(y) (2.3.35)

for all y ≥ y0, where the infinite sum can be evaluated using (2.3.34). To derive an

explicit version of de Bruijn’s result (1.1.7), we observe that (2.3.18), (2.3.35) and

[50, Theorem 23] imply that Q(y)|η(x, y)|≤ C8(y0)R(y)/log y for all y ≥ y0, where

C8(y0) := β(y0)

˜

η1(y0) +
∞∑
k=2

ξk(y0)

¸

with

β(y0) :=


1, if 3 ≤ y0 < 108,

exp(C2(y0)R(y0)), if y0 ≥ 108.

Hence, it follows that

ˇ

ˇ

ˇ

ˇ

ˇ

Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

<
C8(y0)xR(y)

log y
(2.3.36)

for all y ≥ y0.

2.3.4. Deduction of Theorem 2.1.2 and Corollary 2.1.3

Now we apply (2.3.36) to obtain explicit estimates for Φ(x, y) with specific choices of

R(y). Unconditionally, it has been shown [43, Corollary 2] that

|π(z)− li(z)|≤ 0.2593
z

(log z)3/4
exp

˜

−
c

log z

6.315

¸
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for all z ≥ 229. With y0 ≥ 229, the function

R(z) = 0.2593(log z)1/4 exp

˜

−
c

log z

6.315

¸

is strictly decreasing on [y0,∞) and satisfies (1.1.5) and (1.1.6) with

C0(y0) = 2

c

6.315

log y0
,

since

∫ ∞

z

1

t(log t)3/4
exp

˜

−
c

log t

6.315

¸

dt = 2

∫ ∞

?
log z

1
?
t
exp

ˆ

− t
?
6.315

˙

dt

<
2

(log z)1/4

∫ ∞

?
log z

exp

ˆ

− t
?
6.315

˙

dt

=
2
?
6.315

(log z)1/4
exp

˜

−
c

log z

6.315

¸

for z ≥ y0. Numerical computation by Mathematica allows us to conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

< 4.403611
x

(log y)3/4
exp

˜

−
c

log y

6.315

¸

(2.3.37)

for all x ≥ y ≥ 229. Suppose now that 2 ≤ y < 229. Using the inequalities

Φ(x, y) < x/log y [27, Theorem],
∏

p≤y(1 − 1/p) < e−γ/log y [50, Theorem 23] and

0 ≤ µy(u) < 1/log y, we have, for all 2 ≤ y < 229,

ˇ

ˇ

ˇ

ˇ

ˇ

Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

<
2x

log y
< 4.403611

x

(log y)3/4
exp

˜

−
c

log y

6.315

¸

.

Combining this with (2.3.37) proves the first half of Theorem 2.1.2.

Under the assumption of the Riemann Hypothesis, it is known [52, Corollary 1]
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that

|π(z)− li(z)|< 1

8π

?
z log z

for all z ≥ 2,657. With y0 = 2,657 and R(z) = log2 z/(8π
?
z), we have

∫ ∞

z

|π(t)− li(t)|
t2

dt ≤ 1

8π

∫ ∞

z

log t

t3/2
dt =

log z + 2

4π
?
z

≤ C0(y0)R(z)

for z ≥ y0, where

C0(y0) =
2(log y0 + 2)

log2 y0
.

Therefore, we conclude by (2.3.36) and numerical calculations that

ˇ

ˇ

ˇ

ˇ

ˇ

Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

< 0.184563
x log y

?
y

(2.3.38)

for all x ≥ y ≥ 2,657. The values of relevant constants are recorded in the table

below.

Table 2.2: Numerical Constants

constants unconditional estimates conditional estimates
y0 229 108 2,657 108

R(y0) .156576 .097363 .047992 .001351
C0(y0) 2.156096 1.171019 .317985 .120362
C1(y0) 2.534430 1.279593 .571800 .228936
C2(y0) 2.548436 1.279593 .575723 .228940
C3(y0) 3.110976 1.362717 .579718 .228971
C4(y0) 2.548436 1.279593 .575723 .228940
C5(y0) 3.131827 1.362717 .583750 .228975
C6(y0) 2.534430 1.279593 .571800 .228936
C7(y0) 3.110976 1.362717 .579718 .228971
C8(y0) 16.982691 9.079975 4.638553 2.967998
η1(y0) 6.236726 3.628074 2.697198 2.229726∑∞
k=2 ξk(y0) 10.745960 4.388310 1.941356 .737355

To complete the proof of the second half of Theorem 2.1.2, it remains to deal with
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the case 11 ≤ y ≤ 2,657. For simplicity of notation we set

D(x, y) := Φ(x, y)− µy(u)e
γx log y

∏
p≤y

ˆ

1− 1

p

˙

.

Using Mathematica we find that

M := max
11≤z≤2,657

li(z)− π(z)
?
z log z

< 0.259141,

m := min
11≤z≤2,657

eγ log z
∏
p≤z

ˆ

1− 1

p

˙

> 0.876248.

If
?
x ≤ y < x, then

Φ(x, y) = µy(u)x+ (π(x)− li(x))− (π(y)− li(y)) + 1.

Note that x ≤ y2 < 108. Since π(z) < li(z) for 2 ≤ z ≤ 108 by [50, Theorem 16] and

∏
p≤z

ˆ

1− 1

p

˙

<
e−γ

log z

for 0 < z ≤ 108 by [50, Theorem 23], we have

|D(x, y)| < (1−m)
`

1− y−1
˘ x

log y
+M

?
x log x+ 1

≤
ˆ

(1−m)
`

1− y−1
˘

+M
log2 y

?
y

+
log y

y

˙

x

log y
, (2.3.39)

where we have used the fact that log x/
?
x is strictly decreasing on [e2,∞). Numerical

computation shows that the right side of (2.3.39) is < 0.449774x log y/
?
y for 11 ≤

y ≤ 2,657. Suppose now that 11 ≤ y ≤
?
x. By Theorem 2.1.1, Theorem 2.3.3 and
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[50, Theorem 23] we have, for 11 ≤ y ≤ 2,657,

D(x, y) ≤
´

0.6− m

2

`

1− y−1
˘

¯ x

log y
< 0.449774

x log y
?
y

,

D(x, y) > (0.4−M0)
x

log y
> −0.449774

x log y
?
y

.

This settles the case 11 ≤ y ≤ 2,657 and completes the proof of Theorem 2.1.2.

The proof of Corollary 2.1.3 is similar, and we shall only sketch it. When y ≥ y0,

where y0 = 229 for the unconditional estimate and y0 = 2,657 for the conditional

estimate, we have by the triangle inequality that

|Φ(x, y)− µy(u)x|< |D(x, y)|+

ˇ

ˇ

ˇ

ˇ

ˇ

1− eγ log y
∏
p≤y

ˆ

1− 1

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

x

log y
.

Then we bound |D(x, y)| using the values of C8(y0) listed in Table 2.2. To estimate

the second term, we use (2.3.18) when y ≥ 108 and the inequality

m(y) < eγ log y
∏
p≤y

ˆ

1− 1

p

˙

< 1

when y0 ≤ y ≤ 108, where m(y) is given by

m(y) :=


0.983296, if 229 ≤ y ≤ 2,657,

0.996426, if 2,657 ≤ y < 210,000,

0.999643, if 210,000 ≤ y ≤ 108,

according to [50, Theorem 23] and Mathematica. This leads to the asserted bounds

for y ≥ y0. Suppose now that y ≤ y0. In this case, the proof of the unconditional

bound is exactly the same as that of the unconditional bound in Theorem 2.1.2. As

for the conditional bound, we argue in the same way as in the proof of Theorem 2.1.2
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to get

|Φ(x, y)− µy(u)x|≤
ˆ

M
log2 y

?
y

+
log y

y

˙

x

log y

when
?
x ≤ y < x and

|Φ(x, y)− µy(u)x| ≤
ˆ

0.6− 1

2

`

1− y−1
˘

˙

x

log y
,

|Φ(x, y)− µy(u)x| > (0.4−M0)
x

log y
,

when 11 ≤ y ≤
?
x. Together, these inequalities yield the asserted conditional bound.

Remark 2.3.2. The bounds in Theorem 2.1.2 and its corrollary may be improved. For

example, the numerical values of the sum
∑∞

k=2 ξk(y0) may be reduced by keeping ρ (or

even |ω′|) in all of the relevant integrals, but of course the computational complexity

is expected to increase as a cost. In addition, our method would allow an extension

of the range x ≥ y ≥ 11 in the second half of Theorem 2.1.2 to the entire range

x ≥ y ≥ 2 if we argue with y0 = 2,657 replaced by some smaller value and enlarge

the constant 0.449774.
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Chapter 3

The Weighted Erdős–Kac

Theorems

In this chapter we study the distribution of additive functions weighted by nonnega-

tive multiplicative functions. The main purpose is to establish weighted versions of the

Erdős–Kac theorem by generalizing the method of moments of Granville, Soundarara-

jan, Khan, Milinovich and Subedi. Compared to previous approaches to computing

moments, this sieve-theoretic approach allows one to identify easily the main term in

the asymptotic of the mth moment and obtain asymptotic formulas uniformly in a

wide range of m. And we shall take great advantage of these benefits in our treatment

as well. As a result, we are able to obtain, without much complication, results which

are applicable to a wide class of multiplicative functions, and in particular, imply the

theorem of Elboim and Gorodetsky.

In Section 3.1, we reveal the class M∗ of nonnegative multiplicative functions

which we alluded to in Section 1.1 and discuss some interesting examples. In Section

3.2, we introduce additional definitions and notation and state our main results in a

coherent way. Proofs of these results will be presented in detail in Sections 3.3–3.9.

In Sections 3.10 and 3.11, respectively, we describe how Corollary 1.2.1 and 1.2.2 can
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be derived from our results. We close this chapter with a brief discussion on related

problems and possible generalizations.

Before delving into the technical material, we introduce some commonly used

terminologies and notation in analysis and number theory that will also be adopted

throughout this chapter. Given any real or complex valued functions f(x) and g(x)

with a common domain D ⊆ R , we shall use Landau’s big-O notation f(x) = O(g(x))

or Vinogradov’s notation f(x) ≪ g(x) to mean that there exists an absolute constant

C > 0 such that |f(x)|≤ C|g(x)| for all x ∈ D. Likewise, we shall use the notation

f(x) ≫ g(x) interchangeably with g(x) = O(f(x)) . If f(x) = O(g(x)) and g(x) =

O(f(x)) hold simultaneously, then we adopt the short-hand notation f(x) ≍ g(x).

If D contains a neighborhood of ∞ and f(x)/g(x) → 0 as x → ∞, then we write

f(x) = o(g(x)). Similarly, we write f(x) ∼ g(x) if f(x)/g(x) → 1 as x → ∞. We

shall occasionally make use of the function ϵa,b defined by

ϵa,b :=


0, if a = b,

1, otherwise,

for any a, b ∈ R. Equivalently, ϵa,b = 1 − δa,b, where δa,b is the Kronecker delta

function.

Throughout, the letter p always denotes a prime, and we write π(x) for the prime-

counting function, namely, π(x) =
∑

p≤x 1. For any x ∈ R, we write ⌊x⌋ for the

integer part of x and ⌈x⌉ for the least integer ≥ x. For every n ∈ N, we denote by

P−(n) and P+(n) the least and the greatest prime factor of n, respectively, with the

convention that P−(1) = ∞ and P+(1) = 1. We say that n ∈ Z \ {0} is squareful,

square-full, or powerful if for any prime p | n, one has p2 | n. Given any prime power

pν , the relation pν ∥ n means that pν | n but pν+1 ∤ n. Thus n is squarefree if every

prime divisor p of n satisfies p ∥ n. In addition, we denote by Rn the radical or
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squarefree kernel of n, i.e.,

Rn := rad(n) =
∏
p|n

p.

Finally, we write
ˆ

m

m1, ...,mk

˙

:=
m!

m1! · · ·mk!

for the multinomial coefficient of shape (m1, ...,mk) of size m = m1 + · · ·+mk.

Section 3.1

The Class M∗

The weight functions α:N → R≥0 that we shall consider throughout the chapter form

a nice subclass M∗ of nonnegative multiplicative functions, nice in the sense that

there exist absolute constants A0, β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈ [0, 1) and r ∈ (0, 1), such

that the following conditions hold:

(i) α(pν) ≪ p(ϱ0+σ0−1)ν , (3.1.1)

(ii)
∑
p≤x

α(p) log p

pσ0−1
= βx+O

ˆ

x

(log x)A0

˙

, (3.1.2)

(iii)
∑′

p

˜

α(p)2

p2(r+σ0−1)
+
∑
ν≥2

α(pν)

p(r+σ0−1)ν

¸

<∞, (3.1.3)

(iv)
∑
ν≥1

να(pν)

pσ0ν
≪ (log log(p+ 1))ϑ0

p
, (3.1.4)

where the restricted sum
∑′

p is over all but finitely many primes p. Note that

due to the restricted sum in condition (iii), we can ignore the primes for which∑
ν≥2 α(p

ν)/p(r+σ0−1)ν = ∞. It is not hard to verify that M∗ is closed under Dirichlet

convolution. In particular, condition (ii) can be viewed as a weighted version of the

Prime Number Theorem. As we shall see in the next section, conditions (i)–(iii) en-
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able us to obtain, in general, an almost optimal estimate for the partial sum of α(n),

thanks to [11, Theorem 2.1], which is also one of the key ingredients in the argument

of Elboim and Gorodetsky [18]. Condition (iv) essentially speaks about the growth

rate of the local factors of the Dirichlet series F (s) =
∑

n≥1 α(n)n
−s at s = σ0. More

precisely, if we denote by

Fα(s; p) :=
∑
ν≥0

α(pν)

pνs

the local factor of F (s) at p, then condition (iv) is equivalent to

F ′
α(σ0; p)

log p
≪ (log log(p+ 1))ϑ0

p
,

where F ′
α(σ0; p) is the derivative of Fα(s; p) with respect to s evaluated at s = σ0.

Like conditions (ii) and (iii), this condition places a holistic constraint on the growth

of α(pν), and it is one of the types that we expect to hold for many multiplica-

tive functions of interest. It may be worth noting that M∗ properly contains the

subclass of multiplicative functions considered by Elboim and Gorodetsky [18]. A

simple example which falls into M∗ but is not covered by the theorem of Elboim and

Gorodetsky is the multiplicative function α(n) defined by α(p) = 1 for all primes p

and α(pν) = pν/3 for all prime powers pν with ν ≥ 2.

Some familiar multiplicative functions which belong toM∗ are: the power function

nλ, the cth power of the κ-fold divisor function dκ(n)
c, the sum-of-divisors function

σλ(n), Euler’s totient function φ(n), the functions κ
ω(n)
1 and κ

Ω(n)
2 , the characteristic

function µ(n)2 of square-free numbers, the function r2(n)/4, and the function which

counts the number of positive divisors of n representable as a sum of two integral

squares, where c ∈ R, λ > −1, κ, κ1 > 0, κ2 ∈ (0, 2), µ(n) is the Möbius function,

and r2(n) := #{(a, b) ∈ Z2:n = a2 + b2}.

Perhaps a less obvious example is ρg(n), which denotes the number of zeros of
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a nonconstant irreducible polynomial g ∈ Z[x] in Z/nZ. The Chinese remainder

theorem implies that ρg is multiplicative. For this particular example one can take

A0 = β = σ0 = 1, ϑ0 = ϱ0 = 0, and r ∈ (1/2, 1) to be any positive number. The

interested reader is referred to [22, Lemmas 3,7] and [33, Lemma 1] for more details.

We conclude this section with another interesting example, which arises from

the theory modular forms. Consider α(n) = τ(n)2, where τ(n) is the Ramanujan

τ -function, which may be defined as the nth Fourier coefficient of the modular dis-

criminant ∆(z), i.e.,

∆(z) := q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.and

Ramanujan [47] conjectured that τ(n) is multiplicative, that τ(pν+1) = τ(p)τ(pν) −

p11τ(pν−1) for all primes p and all ν ∈ N, and that |τ(p)|≤ 2p11/2 for all primes

p. As he pointed out, these conjectures would imply that |τ(n)|≤ n11/2d(n). The

first two conjectures were proved by Mordell [41] in 1917, and the third one was

proved by Deligne [16] in 1974 as a consequence of his proof of the Weil conjectures

for algebraic varieties over finite fields. In addition, it can be shown [42] that the

Dirichlet series
∑

n≥1 τ(n)
2n−s−11 has the Hoheisel Property. We say that a Dirichlet

series F (s) =
∑

n≥1 ann
−s has the Hoheisel Property if (a) F (s) possesses the explicit

formula ∑
p≤x

ap log p = x−
∑
|γ|≤T

xρ

ρ
+O

ˆ

x(log Tx)2

T

˙

,

where 0 < T ≤
?
x and the sum on the right-hand side runs over all the zeros

ρ = β + iγ of F (s) with β ≥ 0 and |γ|≤ T , (b) F (s) has a zero-free region σ ≥

1−c0/log(|t|+2) for some absolute constant c0 > 0, (c) the number of zeros ρ = β+iγ

of F (s) with β ≥ σ and |γ|≤ T is ≪ T c1(1−σ) uniformly for all 1/2 ≤ σ ≤ 1 and all

sufficiently large T , where c1 > 0 is an absolute constant, and (d) the number of zeros
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ρ = β+ iγ of F (s) with β ≥ 0 and |γ|≤ T is ≪ T log T as T → ∞. In particular, (a),

(b) and (d) are sufficient for establishing the following analogue of the Prime Number

Theorem for τ(n)2/n11:

∑
p≤x

τ(p)2

p11
log p = x+O

´

x exp
´

−c0
a

log x
¯¯

with some absolute constant c0 > 0. From these properties of τ(n) it follows that

α(n) = τ(n)2 satisfies conditions (i)–(iv) with any fixed A0 > 0, β = 1, σ0 = 12,

ϑ0 = 0, and any fixed ϱ0 ∈ (0, 1) and r ∈ (1/2, 1).

Section 3.2

Main Results

Let α(n) be a multiplicative function in the subclass M∗ defined in the previous

section, and let

S(x) = Sα(x) :=
∑
n≤x

α(n)

be the partial sum of α(n) over n ≤ x. For any additive function f :N → R, we may

define

A(x) = Aα,f (x) :=
∑
p≤x

α(p)
f(p)

pσ0
,

B(x) = Bα,f (x) :=
∑
p≤x

α(p)
f(p)2

pσ0
.

If we model n ≤ x by a random variable n defined on the sample space N∩[1, x] having

a probability distribution with respect to the natural probability measure induced by

α, that is to say, Prob(n = k) = α(k)/S(x) for every k ∈ N∩[1, x], then one may hope

that f(n) also obeys a certain distribution law with respect to the same probability
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measure under suitable conditions. We shall show, by estimating the weighted mth

moment defined by

M(x;m) =Mα,f (x;m) := S(x)−1
∑
n≤x

α(n)(f(n)− A(x))m

for every m ∈ N, that for certain additive functions f , the distribution of f(n) is

approximately Gaussian with mean A(x) and variance B(x). More precisely, the

limiting distribution of the normalization (f(n)− A(x))/
a

B(x) of f(n) is standard

Gaussian. To state our results in a coherent manner, we set χm := (1 + (−1)m)/2,

the characteristic function of even integers, and

Cm :=
m!

2m/2Γ(m/2 + 1)

for all m ∈ N, where Γ is the Gamma function. One quickly notes that Cm = µm =

(m − 1)! ! for m even. Since the numbers Cm play a nonnegligible role in the error

terms of our uniform estimates for M(x;m), we find it more convenient to use Cm in

place of µm. Our first result is the following theorem.

Theorem 3.2.1. Let f :N → R be a strongly additive function with |f(p)|≤M for all

primes p, where M > 0 is an absolute constant. Let α:N → R≥0 be a multiplicative

function, and suppose that there exist absolute constants A0, β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈

[0, 1) and r ∈ (0, 1), such that α(n) satisfies the conditions (i)–(iv).

(a) If β = 1 and 0 < h0 < (3/2)2/3 is arbitrary, and if B(x) → ∞ as x→ ∞, then

we have

M(x;m) = CmB(x)
m
2

˜

χm +O

˜

Mm
3
2

a

B(x)

¸¸

uniformly for all sufficiently large x and all 1 ≤ m ≤ h0(B(x)/M2)1/3.
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(b) If β ̸= 1 and if B(x)/(log log log x)2 → ∞ as x→ ∞, then we have

M(x;m) = CmB(x)
m
2

˜

χm +O

˜

Mm
3
2 log log log x
a

B(x)

¸¸

uniformly for all sufficiently large x and all 1 ≤ m≪ B(x)1/3/(log log log x)2/3.

The implicit constants in the error terms of both asymptotic formulas above depend

at most on the explicit and implicit constants in the hypotheses except for M .

Remark 3.2.1. It may be worth pointing out that as in Theorem 3.2.1, the implicit

constants in the estimates appearing in the rest of the paper depend at most on the

explicit and implicit constants in the hypotheses unless stated otherwise.

In the case where α(n) = 1 and f(n) = ω(n), we recover [30, Theorem 1] with a

slightly more flexible range 1 ≤ m ≤ h0(log log x)
1/3 compared to the original range

1 ≤ m ≤ (log log x)1/3. Though Theorem 3.2.1 is formulated for strongly additive

functions, similar things can be said about the additive functions whose values at

prime powers do not grow too fast and are hence not expected to contribute very

much. A simple example of such functions is Ω(n). Since Ω(pν) = ν for all pν , one

can show, by establishing (1.2.2), that Ω(n) does not differ from its cousin ω(n) very

much for “most” values of n, and so they are expected to have the same distribution.

More generally, we shall prove the following variant of Theorem 3.2.1 for additive

functions. For simplicity’s sake, we shall focus on a subclass of the multiplicative

functions in M∗.

Theorem 3.2.2. Let f :N → R be an additive function such that f(pν) = O(νκ)

for all prime powers pν, where κ ≥ 0 is an absolute constant. Let α:N → R≥0 be a

multiplicative function, and suppose that there exist absolute constants A0, β, σ0 > 0,

ϑ0 ≥ 0, ϱ0 ∈ [0, 1/2) and λ ∈ (0, 21−2ϱ0), such that α(n) satisfies (3.1.2), (3.1.4), and

the condition that α(pν) = O((λpϱ0+σ0−1)ν) for all prime powers pν.
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(a) If β = 1 and 0 < h0 < (3/2)2/3 is arbitrary, and if B(x) → ∞ as x→ ∞, then

we have

M(x;m) = CmB(x)
m
2

˜

χm +O

˜

Mmκ+ 3
2

a

B(x)

¸¸

uniformly for all sufficiently large x and allm ∈ N satisfyingm ≤ h0(B(x)/M2)1/3

and m ≪ B(x)1/(2κ+3), where M > 0 is an absolute constant for which |f(p)|≤

M holds for all primes p.

(b) If β ̸= 1 and if B(x)/(log log log x)2 → ∞ as x→ ∞, then we have

M(x;m) = CmB(x)
m
2

˜

χm +O

˜

Mm
3
2 plog log log x+mκq

a

B(x)

¸¸

uniformly for all sufficiently large x and all

1 ≤ m≪ min

ˆ

B(x)1/(2κ+3),
B(x)1/3

(log log log x)2/3

˙

.

The implicit constants in the error terms of both asymptotic formulas above depend

at most on the explicit and implicit constants in the hypotheses except for M .

Theorem 3.2.2 clearly implies the first part of [18, Theorem 1.1] if we set f(n) =

Ω(n), κ = 1, and ϑ0 = ϱ0 = 0. It is easy to see that if α(pν) = O((λpr0+σ0−1)ν)

for all prime powers pν , where σ0 > 0, r0 ∈ [0, 1/2) and λ ∈ (0, 21−2r0) are abso-

lute constants, then conditions (i) and (iii) are automatically fulfilled with any fixed

max(r0 + log2 λ, 0) ≤ ϱ0 < 1, r0 + max(1/2, log2 λ) < r < 1, and of course the same

parameter σ0. Indeed, we shall derive Theorem 3.2.2 as a corollary of Theorem 3.2.1.

Let g ∈ Z[x] be a nonconstant irreducible polynomial. As in Section 3.1, let ρg(n)

denote the number of zeros of g in Z/nZ. More generally, if g ∈ Q[x] is a nonconstant

irreducible polynomial, we may extend the definition above by setting ρg(n) = 0 if

gcd(n, cg) > 1, where cg ∈ N is the least positive integer such that cgg(x) ∈ Z[x],
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and insisting that ρg(n) be the number of zeros of g(x) (or equivalently, cgg(x)) in

Z/nZ when gcd(n, cg) = 1. Extended this way with the convention that ρg(1) = 1,

the function ρg(n) is still a multiplicative function of n. It is known [33, Lemma 1]

that ρg is bounded on prime powers and that

∑
p≤x

ρg(p)

p
= log log x+Mρg +O

ˆ

1

log x

˙

.

Given a strongly additive function f :N → R, we define

Af,g(x) :=
∑
p≤x

ρg(p)
f(p)

p
,

Bf,g(x) :=
∑
p≤x

ρg(p)
f(p)2

p
.

For simplicity’s sake, suppose that g(N) ⊆ N. In the case g ∈ Z[x], Halberstam [32,

Theorem 3] showed that if Bf,g(x) → ∞ as x → ∞, and if f(p) = o
`a

Bf,g(p)
˘

1,

then

1

x

∑
n≤x

pf(g(n))− Af,g(x)q
m = (µm + o(1))Bf,g(x)

m
2

for every fixed m ∈ N. Under the stronger condition f(p) = O(1), Theorem 3.2.1

leads to a weighted version of this result in the case g(n) = n. As for the remaining

cases we have the following theorem.

Theorem 3.2.3. Let f :N → R be a strongly additive function with |f(p)|≤ M for

all primes p, where M > 0 is an absolute constant, and let g ∈ Q[x] be a nonconstant

1Halberstam [32] wrote that for g(x) = x this pair of conditions contain the condition that f(p) =
o((log p)ϵ) for every given ϵ > 0. However, this claim is incorrect, as noted by Prof. Pomerance. In
fact, a simple counterexample may be constructed as follows. Let P be an arbitrary infinite subset of
odd primes such that

∑
p∈P 1/p < ∞, and put P(x) := P ∩ [3, x]. Define f(p) =

?
log log p for p ∈ P

and f(p) = 1 for p /∈ P. From partial summation it follows that
∑

p∈P(x) f(p)
2/p = o(log log x).

Then one sees readily that f(p) = o((log p)ϵ) for any given ϵ > 0, while f(p) ∼
a

B(p) for large
p ∈ P.
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irreducible polynomial such that g(0) ̸= 0 and g(N) ⊆ N. Let α:N → R≥0 be a

multiplicative function, and suppose that there exist absolute constants A0, β, σ0 > 0,

ϑ0 ≥ 0, ϱ0 ∈ [0, 1) and r ∈ (0, 1), such that α(n) satisfies the conditions (i)–(iv).

Furthermore, suppose that there exists an absolute constant B0 > 0 and a function

δ(x) ∈ (0, 1], such that

∆α(x; q, a) :=
∑
n≤x

n≡a (mod q)

α(n)− 1

φ(q)

∑
n≤x

gcd(n,q)=1

α(n) = O

ˆ

S(x)

φ(q)(log x)B0

˙

(3.2.1)

uniformly for all sufficiently large x, all q ∈ N∩ [1, xδ(x)], and all a ∈ Z coprime to q.

If 0 < h0 < (3/2)2/3 is arbitrary, and if δ(x)2Bf,g(x) → ∞ as x→ ∞, then we have

S(x)−1
∑
n≤x

α(n) pf(g(n))− Af,g(x)q
m = CmBf,g(x)

m
2

˜

χm +O

˜

Mm
3
2

δ(x)
a

Bf,g(x)

¸¸

uniformly for all sufficiently large x and allm ∈ N satisfying 1 ≤ m ≤ h0(Bf,g(x)/M
2)1/3

and m ≪ (δ(x)2Bf,g(x))
1/3, where the implicit constant in the error term depends at

most on the explicit and implicit constants in the hypotheses except for M .

Roughly speaking, (3.2.1) can be viewed as a condition of the Siegel–Walfisz

type which ensures that α(n) is well distributed among the reduced residue classes

a (mod q) for all q in a reasonably wide range. A classical example of α(n) that sat-

isfies all of the conditions in Theorem 3.2.3 is dk(n), where k ∈ N. In this case it is

known [5, 44] that one can actually take δ(x) to be a constant depending on k and

∆α(x; q, a) = O(x1−ϵ/φ(q)) for some constant ϵ ∈ (0, 1). Anther interesting example

is r2(n)/4 for which one may take δ(x) = 2/3− ϵ and any fixed B0 > 0 [5].

We shall only sketch the proof of Theorem 3.2.3, since it is similar to, and in fact,

much easier than that of Theorem 3.2.1. The argument used in the proof may also

be modified to study the joint distribution of f(n+ h1) and f(n+ h2) with any fixed
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integers h1 ̸= h2.

It is not hard to see that the condition f(p) = O(1) in Theorem 3.2.1 can be

relaxed, especially when we do not pursue uniformity in m in the asymptotics for the

mth moment. For instance, in the case α(n) ≡ 1 Delange and Halberstam showed

[15, Theorem 1] that if f :N → R is a strongly additive function such that B(x) → ∞

as x→ ∞, f(p) = O(
a

B(p)) for all primes p, and

∑
p≤x

|f(p)|>ϵ
?

B(x)

f(p)2

p
= o(B(x)) (3.2.2)

for any given ϵ > 0, then

1

x

∑
n≤x

pf(n)− A(x)qm = (µm + o(1))B(x)
m
2

for every fixed m ∈ N. This result implies at once the Kubilius–Shapiro theorem [54,

Theorem A] under the additional assumption f(p) = O(
a

B(p)). On the other hand,

Delange and Halberstam noted that their result no longer holds if this additional

assumption is removed, which incidentally exposes the limitation of the method of

moments compared to the method evolved by Erdős and Kac. Nevertheless, it will be

clear in the sequel that the proof of Theorem 3.2.1 makes it possible for us to obtain

the following natural extension of the result of Delange and Halberstam.

Theorem 3.2.4. Let f :N → R be a strongly additive function. Let α:N → R≥0 be a

multiplicative function, and suppose that there exist absolute constants A0, β, σ0 > 0,

ϑ0 ≥ 0, ϱ0 ∈ [0, 1) and r ∈ (0, 1), such that α(n) satisfies the conditions (i)–(iv).

Define

B∗(x) :=


B(x), if β = 1,

B(x)/(log log log x)2, if β ̸= 1,
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and suppose B∗(x) → ∞ as x → ∞. If there exists an absolute constant K > 0

such that f(n) = o(
a

B(x)) for all squarefree n ∈ [1, x] composed of prime factors p

satisfying |f(p)|> K
a

B∗(x), and if

∑
p≤x

|f(p)|>ϵ
?

B∗(x)

α(p)
f(p)2

pσ0
= o(B∗(x))

for any given ϵ > 0, then M(x;m) = (µm + o(1))B(x)
m
2 for every fixed m ∈ N.

Note that the theorem of Delange and Halberstam [15, Theorem 1] corresponds to

the case α ≡ 1. The proof of Theorem 3.2.4, which we shall only outline, is based on

the proofs of Theorem 3.2.1 and [15, Theorem 1]. We shall also obtain as a corollary

the following analogue of the Kubilius–Shapiro theorem [54, Theorems A, C].

Corollary 3.2.5. Under the notation and hypotheses in Theorem 3.2.4, we have

lim
x→∞

S(x)−1
∑
n≤x

f(n)≤A(x)+V
?

B(x)

α(n) = Φ(V )

for any given V ∈ R. The same is true if f is merely additive.

It is clear that Theorem 3.2.4 implies Corollary 3.2.5 when f is strongly additive.

To handle the more general case where f is merely additive, we shall prove a weighted

version of [54, Theorem B] which shows that when it comes to the distribution prob-

lem, there is no essential difference between strongly additive functions and general

additive functions, and thus the distribution of an additive function f is determined

solely by its values at primes.

Before embarking on the proofs, we describe briefly the main steps in the proof

of the uniform estimates for moments. The starting point is the approximation to

moments used by Granville, Soundararajan, Khan, Milinovich and Subedi. Though
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the underlying idea is the same, we need a more complicated version of this approxi-

mation (see Lemma 3.4.1) due to the more general nature of our multiplicative weight

functions α(n). To utilize it, we first need to develop an asymptotic formula for the

mean value of α(n) with n ≤ x restricted to any squarefree integer a ∈ N ∩ [1, x]

(see Lemma 3.3.3). An important feature of this formula is that it holds uniformly

for all squarefree integer a ∈ N ∩ [1, x], which is key to both applying the moment

approximation and making the moment estimates uniform. This formula will serve

as the substitute for the one concerning dk(n) used by Khan, Milinovich and Subedi.

Unlike the proof given by Khan, Milinovich and Subedi, which is based on Peron’s

formula and makes use of the special property dk(mn) ≤ dk(m)dk(n) for all m,n ∈ N,

our proof uses the mean value estimate for α(n) given by [11, Theorem 2.1] and is

completely elementary. This is done in the next section.

After applying the moment approximation, we find that the estimation of the

main contribution can be worked out as in [30] and [38]. It is the estimation of the

error terms that is more involved in our case. In particular, the estimation of the error

term in the moment approximation supplied by Lemma 3.4.1 in Section 3.4 requires

separate treatments according as β = 1 or β ̸= 1. Besides, since the error term in our

asymptotic formula for the mean value of α(n) over a | n provided by Lemma 3.3.3

in Section 3.3 is weaker than what one can obtain for the special weight dk(n) by

complex analytic approaches, we need to handle the case β ∈ (0, 1) with some special

care and tailor the selection of parameters accordingly in order to minimize the error

terms. With these new technical complications being taken care of, we obtain the

desired uniform estimates for moments stated in Theorems 3.2.1 and 3.2.2.

Remark 3.2.2. The condition that f(p) = o((log p)ϵ) for any given ϵ > 0, mentioned

by Halberstam [32], does not imply (3.2.2) in general. To see this, assume for the
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moment that there exists an infinite subset P of primes such that

sP(x) :=
∑

p∈P∩[17,x]

1

p
=

log log x

log log log x
+ c+ o(1) (3.2.3)

for sufficiently large x, where c ∈ R is an absolute constant. Define

f(p) = (log p)1/(2 log log log p)

for p ∈ P and f(p) = 1 for p /∈ P . Clearly, f(p) = o((log p)ϵ) for any given ϵ > 0. It

is easily seen by partial summation that

∑
p∈P∩[17,x]

f(p)2

p
=

∫ x

17−
(log t)1/log log log t dsP(t) = (1 + o(1))(log x)1/log log log x,

which implies that

B(x) =
∑

p∈P∩[17,x]

f(p)2

p
+O(log log x) = (1 + o(1))(log x)1/log log log x.

Take y = x1/log log x and ϵ = 1/2. Since

log log y = log log x− log log log x,

log log log y =

ˆ

1 +O

ˆ

1

log log x

˙˙

log log log x,

we have

(log y)1/log log log y = exp

ˆ

log log x

log log log x
− 1 +O

ˆ

1

log log log x

˙˙

.
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It follows that

f(p)2 > (log y)1/log log log y >
1

3
(log x)1/log log log x > ϵ2B(x)

for p ∈ P ∩ (y, x] when x is sufficiently large. Hence, we have

∑
p≤x

|f(p)|>ϵ
?

B(x)

f(p)2

p
≥

∑
p∈P∩(y,x]

f(p)2

p
>

1

2
(log x)1/log log log x >

1

3
B(x).

It remains to construct a set P with the desired property (3.2.3). Note first that∑
p≤x 1/p = log log x+O(1) grows slightly faster than our target

u(x) :=
log log x

log log log x
,

according to Mertens’ second theorem [35, Theorem 427]. Moreover, if p < p′ are

large consecutive primes, then u(p′)−u(p) = o(1/log p), by Bertrand’s postulate. Let

17 be the first prime in P . Suppose that we have already selected for P the primes

up to q, where q is prime. We put the next prime q′ in P if sP(q) < u(q) and leave it

out of P otherwise. Then the running sum sP(x) changes by at most 1/q as x moves

from q to q′, while the target u(x) changes by at most o(1/log q) as x moves from q

to q′. Thus, the difference sP(x)− u(x) can be kept within o(1/log x). In particular,

(3.2.3) holds for P with c = 0.
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Section 3.3

Mean Values of Multiplicative Functions

Without loss of generality, we may assume A0 ∈ (0, 1) in the sequel. In addition, we

shall also make use of the asymptotic formula

∑
p≤x

α(p)

pσ0
= β log log x+Mα +O

`

(log x)−A0
˘

(3.3.1)

with some constant Mα ∈ R, which follows immediately from (3.1.2) via partial

summation. In view of our assumption that f(p) = O(1), this formula implies trivially

that B(x) ≪ log log x. Moreover, if we define, for every prime p,

ψ0(p) :=
∑
ν≥2

α(pν)

pσ0ν
,

then we infer from (3.1.1), (3.1.3) and (3.1.4) that

ψ0(p) ≪
(log log(p+ 1))ϑ0

p

and that
∑

p ψ0(p) <∞.

Lemma 3.3.1. Let α:N → R≥0 be a multiplicative function satisfying (3.1.1) and

(3.1.4) with some σ0, ϑ0 > 0 and ϱ0 ∈ [0, 1). Fix h ∈ R, ϵ0 ∈ (0, 1) and c0 ∈ [1, ϵ−1
0 ),

and define

Iα,h(x; a) :=
∑
q≤x
Rq=a

α(q)

qσ0

ˆ

log
3x

q

˙h

,

where a ∈ N ∩ [1, x] is squarefree. Then there exists a constant δ0 > 0 such that

uniformly for all sufficiently large x, any δ ∈ [δ0 log log x/log x, 1], and any squarefree
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a ∈ N ∩ [1, x] with ω(a) ≤ (1− ϱ0)ϵ0δ
−1, we have

Iα,h(x; a) =

ˆ

λ̃α(a) +O

ˆ

2O(ω(a))

log x

ˆ

1

xc0δω(a)
+
ϵh,0L(a) logP

+(a)

a

˙˙˙

(log x)h,

where

λ̃α(a) :=
∏
p|a

∞∑
ν=1

α(pν)

pσ0ν
,

L(a) :=
∏
p|a

(log log(p+ 1))ϑ0 .

Proof. Let δ ∈ (0, 1] and fix c1 ∈ (c0, ϵ
−1
0 ). Put δ1 := (1− ϱ0)

−1c1δ and y := xkδ1 . For

any squarefree a = p1 · · · pk ∈ N∩ [1, x] with p1 < ... < pk ≤ x and k ≤ (1− ϱ0)ϵ0δ
−1,

we have kδ1 ≤ c1ϵ0 < 1 and

Iα,h(x; a) =
∑

p
ν1
1 ···pνkk ≤x
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

ˆ

log
3x

pν11 · · · pνkk

˙h

.

On the one hand, we see that

∑
p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

ˆ

log
3x

pν11 · · · pνkk

˙h

=
∑

p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

(log 3x)h

˜

1 +O

˜

ϵh,0
log 3x

k∑
i=1

νi log pi

¸¸

=
∑

p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

(log x)h +O

ˆ

2O(k)ϵh,0L(a) log pk
a

(log x)h−1

˙

,
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by (3.1.4). From (3.1.1) it follows that

∑
p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

= λ̃α(a) +O

¨

˚

˚

˝

2O(k)
∑

p
ν1
1 ···pνkk >y
ν1,...,νk≥1

1

p
(1−ϱ0)ν1
1 · · · p(1−ϱ0)νk

k

˛

‹

‹

‚

.

The sum in the error term above may be split into two sums according as pν22 · · · pνkk ≤

y or pν22 · · · pνkk > y. In the first sum we must have pν11 > y/ppν22 · · · pνkk q. Thus summing

over ν1 and then over ν2, ..., νk, we see that the first sum is

≪ 1

y1−ϱ0

∑
p
ν2
2 ···pνkk ≤y
ν2,...,νk≥1

1 ≤ 2O(k)(log x)k−1

xc1kδ(log p2) · · · (log pk)
.

The second sum is simply

∑
p
ν2
2 ···pνkk >y
ν2,...,νk≥1

1

p
(1−ϱ0)ν2
2 · · · p(1−ϱ0)νk

k

∑
ν1≥1

1

p
(1−ϱ0)ν1
1

≪
∑

p
ν2
2 ···pνkk >y
ν2,...,νk≥1

1

p
(1−ϱ0)ν2
2 · · · p(1−ϱ0)νk

k

.

It follows that

∑
p
ν1
1 ···pνkk >y
ν1,...,νk≥1

1

p
(1−ϱ0)ν1
1 · · · p(1−ϱ0)νk

k

≪
∑

p
ν2
2 ···pνkk >y
ν2,...,νk≥1

1

p
(1−ϱ0)ν2
2 · · · p(1−ϱ0)νk

k

+
2O(k)(log x)k−1

xc1kδ(log p2) · · · (log pk)
.

Repeating this argument, we obtain

∑
p
ν1
1 ···pνkk >y
ν1,...,νk≥1

1

p
(1−ϱ0)ν1
1 · · · p(1−ϱ0)νk

k

≤ 2O(k)(log x)k−1

xc1kδ(log p2) · · · (log pk)
,
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from which we deduce

∑
p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

= λ̃α(a) +O

ˆ

2O(k)(log x)k−1

xc1kδ(log p2) · · · (log pk)

˙

. (3.3.2)

On the other hand, we have

∑
x1<pν≤x2

α(pν)

pσ0ν

ˆ

log
3x2
pν

˙h

≪
∑

logp x1<ν≤logp x2

ν∈Z

1

p(1−ϱ0)ν

ˆ

log
3x2
pν

˙h

= −
∫ logp x2

logp x1

ˆ

log
3x2
pt

˙h

d

¨

˚

˚

˝

∑
t<ν≤logp x2

ν∈Z

1

p(1−ϱ0)t

˛

‹

‹

‚

uniformly for all primes p and all 0 < x1 ≤ x2. Using integration by parts, we see

that the integral above is equal to

−(log(3x2/x1))
h

∑
logp x1<ν≤logp x2

ν∈Z

1

p(1−ϱ0)ν
−

∫ logp x2

logp x1

¨

˚

˚

˝

∑
t<ν≤logp x2

ν∈Z

1

p(1−ϱ0)t

˛

‹

‹

‚

d

ˆ

log
3x2
pt

˙h

.

Since ∑
t<ν≤logp x2

ν∈Z

1

p(1−ϱ0)t
<

1

p(1−ϱ0)(⌊t⌋+1)
· p1−ϱ0

p1−ϱ0 − 1
≪ 1

p(1−ϱ0)t
,

we have

(log(3x2/x1))
h

∑
logp x1<ν≤logp x2

ν∈Z

1

p(1−ϱ0)ν
≪ (log(3x2/x1))

h

x1−ϱ0
1
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and

∫ logp x2

logp x1

¨

˚

˚

˝

∑
t<ν≤logp x2

ν∈Z

1

p(1−ϱ0)t

˛

‹

‹

‚

d

ˆ

log
3x2
pt

˙h

≪ ϵh,0 log p

∫ logp x2

logp x1

1

p(1−ϱ0)t

ˆ

log
3x2
pt

˙h−1

dt

=
ϵh,0

(3x2)1−ϱ0

∫ log(3x2/x1)

log 3

th−1e(1−ϱ0)t dt

≪ ϵh,0
(3x2)1−ϱ0

(log(3x2/x1))
h−1

ˆ

3x2
x1

˙1−ϱ0

=
ϵh,0(log(3x2/x1))

h−1

x1−ϱ0
1

.

Hence, it follows that

∑
x1<pν≤x2

α(pν)

pσ0ν

ˆ

log
3x2
pν

˙h

≪ (log(3x2/x1))
h

x1−ϱ0
1

(3.3.3)

uniformly for all primes p and all 0 < x1 ≤ x2. This inequality implies immediately

∑
y<p

ν1
1 ···pνkk ≤x

ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

ˆ

log
3x

pν11 · · · pνkk

˙h

≤ 2O(k)(log x)h

y1−ϱ0

∑
p
ν2
2 ···pνkk ≤x
ν2,...,νk≥1

1

≤ 2O(k)(log x)k+h−1

xc1kδ(log p2) · · · (log pk)
.

Lemma 3.3.1 now follows upon combining the above with (3.3.2) and taking δ0 =

1/(c1 − c0) with the range δ ≥ δ0 log log x/log x in mind.

Let α:N → R≥0 be a multiplicative function as in Theorem 3.2.1 with A0 ∈ (0, 1).

Suppose first that (3.1.3) holds with the restricted sum
∑′

p replaced by the full sum∑
p. For σ0 = 1 De la Bretèche and Tenenbaum [11, Theorem 2.1] showed

∑
n≤x

α(n) =
1

Γ(β)

∏
p

ˆ

1− 1

p

˙β ∞∑
ν=0

α(pν)

pν
x(log x)β−1

ˆ

1 +O

ˆ

1

(log x)A0

˙˙

,
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where the implicit constant in the error term depends at most on the explicit and im-

plicit constants in the hypotheses. For the general case where σ0 > 0 is arbitrary, it is

easy to show, by applying the above to α(n)/nσ0−1 and employing partial summation

as in the proof of [18, Corollary 3.3], that

S(x) =
∑
n≤x

α(n) = λαx
σ0(log x)β−1

ˆ

1 +O

ˆ

1

(log x)A0

˙˙

, (3.3.4)

where

λα :=
1

σ0Γ(β)

∏
p

ˆ

1− 1

p

˙β ∞∑
ν=0

α(pν)

pσ0ν
. (3.3.5)

Suppose now that (3.1.3) holds with the restricted sum
∑′

p being the sum
∑

p>Q0
,

where Q0 ≥ 1 is some absolute constant. Let P0 :=
∏

p≤Q0
p and 1P0(n) the indicator

function of the set {n ∈ N: gcd(n, P0) = 1}. Then α(n)1P0(n) is a nonnegative

multiplicative function satisfying (3.1.1)–(3.1.4) with the sum
∑′

p in (3.1.3) replaced

by the full sum
∑

p. In particular, (3.3.4) is applicable to α(n)1P0(n). Thus, we

obtain

∑
n≤x

gcd(n,P0)=1

α(n) = λα(P0)x
σ0(log 3x)β−1

ˆ

1 +O

ˆ

1

(log 3x)A0

˙˙

, (3.3.6)

where

λα(P0) :=
1

σ0Γ(β)

∏
p≤Q0

ˆ

1− 1

p

˙β

·
∏
p>Q0

ˆ

1− 1

p

˙β ∞∑
ν=0

α(pν)

pσ0ν
.

Examining the proof of Lemma 3.3.1, we find that for every given h ∈ R,

∑
q≤x
Rq |P0

α(q)

qσ0

ˆ

log
3x

q

˙h

=
∏
p≤Q0

∞∑
ν=0

α(pν)

pσ0ν
(log x)h

ˆ

1 +O

ˆ

1

log x

˙˙
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for all sufficiently large x. Combining this with (3.3.6) gives

S(x) =
∑
q≤x
Rq |P0

α(q)
∑

n′≤x/q
gcd(n′,P0)=1

α(n′) = λαx
σ0(log x)β−1

ˆ

1 +O

ˆ

1

(log x)A0

˙˙

,

which is the same as (3.3.4).

For our applications, we will need an asymptotic formula for

S(x; a) = Sα(x; a) :=
∑
n≤x

gcd(n,a)=1

α(n)

uniform in a ∈ N ∩ [1, x]. One may be tempted to apply (3.3.4) to the function

α(n)1a(n), where 1a(n) is the indicator function of the set {n ∈ N: gcd(n, a) = 1}.

However, it is not immediately clear whether the implied constant in the error term

obtained via this naive approach is independent of a ∈ N ∩ [1, x]. Fortunately, the

following lemma provides the desired estimate for S(x; a) under the hypotheses (i)–

(iv).

Lemma 3.3.2. Let α:N → R≥0 be a multiplicative function satisfying (3.1.1)–(3.1.4)

with some A0 ∈ (0, 1), β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈ [0, 1) and r ∈ (0, 1). Then we have

S(x; a) = λα(a)x
σ0(log x)β−1

ˆ

1 +O

ˆ

1

(log x)A0

˙˙

uniformly for all sufficiently large x and all a ∈ N ∩ [1, x], where

λα(a) :=
1

σ0Γ(β)

∏
p|a

ˆ

1− 1

p

˙β

·
∏
p∤a

ˆ

1− 1

p

˙β ∞∑
ν=0

α(pν)

pσ0ν
,

The implicit constant in the error term depends at most on the explicit and implicit

constants in the hypotheses.

92



3.3 Mean Values of Multiplicative Functions

Proof. Let a ∈ N ∩ [1, x]. For simplicity of notation, we write
∑a for sums in which

the indices take values coprime to a. As we have demonstrated above, there is no

loss of generality by assuming that σ0 = 1 and that (3.1.3) holds with the restricted

sum
∑′

p replaced by the full sum
∑

p. We start by determining the relation between

λα(a) and λα. Note that condition (iv) implies that α(p) ≪ (log log(p + 1))ϑ0 , from

which it follows that

∑
p|a

α(p) log p≪ (log log x)ϑ0 log a ≤ (log log x)ϑ0 log x.

By (3.1.2) we have

∑a

p≤x

α(p) log p = βx+O

ˆ

x

(log x)A0

˙

,

from which we deduce

∑a

p≤x

α(p)

p
= β log log x+Mα +O

`

(log x)−A0
˘

.

Combining the above with (3.3.1), we see that

λα(a) = λα
∏
p|a

˜

∞∑
ν=0

α(pν)

pν

¸−1

= λα exp

¨

˝−
∑
p|a

α(p)

p
+O(1)

˛

‚

= λα exp

˜

−
∑
p≤x

α(p)

p
+

∑a

p≤x

α(p)

p
+O(1)

¸

≍ λα ≍ 1.

This assures us that there is no need to differentiate λα(a) and λα in the error terms.
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Next, we connect S(x; a) with

T (x; a) = Tα(x; a) :=
∑a

n≤x

α(n)

n
.

It is clear from (3.3.4) that S(x; a) ≤ S(x; 1) ≪ x(log x)β−1 and T (x; a) ≤ T (x, 1) ≪

(log x)β. Moreover, it is shown in the the proof of [11, Theorem 2.1] that

T (x; 1) =

ˆ

1 +O

ˆ

1

log x

˙˙

λα
β
(log x)β. (3.3.7)

Following the proof of [11, Theorem 2.1], we find

S(x; a) log x =
∑a

n≤x

α(n) log n+
∑a

n≤x

α(n) log
x

n

=
∑a

k≤x

α(k)
∑a

pν≤x/k
p∤k

α(pν) log pν +

∫ x

1−

S(t; a)

t
dt

=
∑a

k≤x

α(k)
∑a

p≤x/k

α(p) log p+O

¨

˚

˚

˝

∑
k≤x

α(k)
∑
p≤x/k
p|k

α(p) log p

˛

‹

‹

‚

+O

¨

˚

˚

˝

∑
k≤x

α(k)
∑

pν≤x/k
ν≥2

α(pν) log pν

˛

‹

‹

‚

+O
`

x(log x)β−1
˘

= βxT (x, a)−
∑a

k≤x

α(k)
∑
p≤x/k
p|a

α(p) log p+O

˜

x
∑
k≤x

α(k)

k(log(3x/k))A0

¸

+O
`

x(log x)β−1
˘

, (3.3.8)
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since (3.1.3) and (3.3.4) imply that

∑
k≤x

α(k)
∑
p≤x/k
p|k

α(p) log p+
∑
k≤x

α(k)
∑

pν≤x/k
ν≥2

α(pν) log pν

=
∑
k≤x

α(k)
∑

pν≤x/k
ν≥2

`

α(p)α(pν−1) log pν−1 + α(pν) log pν
˘

≪ x(r+1)/2
∑
k≤x

α(k)

k(r+1)/2

∑
p

∑
ν≥2

ˆ

α(p)

pr
· α(p

ν−1)

pr(ν−1)
+
α(pν)

prν

˙

≪ x(r+1)/2
∑
k≤x

α(k)

k(r+1)/2

∑
p

˜

α(p)2

p2r
+
∑
ν≥2

α(pν)

prν

¸

≪ x(r+1)/2
∑
k≤x

α(k)

k(r+1)/2

≪ x(log x)β−1.

By partial summation we have

∑
k≤x

α(k)

k(log(3x/k))A0
=

S(x)

x(log 3)A0
+

∫ x

1−

log(3x/t)− A0

t2(log(3x/t))A0+1
S(t) dt

≪ (log x)β−1 +

∫ x

1

(log 3t)β−1

t(log(3x/t))A0
dt

= (log x)β−1 +

∫ log x

0

(log 3 + t)β−1

(log 3x− t)A0
dt

≪ (log x)β−1 +
1

(log x)A0

∫ (log x)/2

0

(log 3 + t)β−1 dt

+ (log x)β−1

∫ log x

(log x)/2

1

(log 3x− t)A0
dt

≪ (log x)β−A0 . (3.3.9)
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Let x1 := x/(log x)2. For k ≤ x1 we see that

∑
p≤x/k
p|a

α(p) log p≪ (log log x)ϑ0 log a≪ x

k(log(x/k))A0
,

so that

∑a

k≤x1

α(k)
∑
p≤x/k
p|a

α(p) log p≪ x
∑
k≤x

α(k)

k(log(3x/k))A0
≪ x(log x)β−A0 . (3.3.10)

On the other hand, we have by (3.1.2) that

∑a

x1<k≤x

α(k)
∑
p≤x/k
p|a

α(p) log p≪ x
∑

x1<k≤x

α(k)

k
≪ x

`

(log x)β − (log x1)
β +O((log x)β−1)

˘

≪ x(log x)β−1 log log x, (3.3.11)

where we have used (3.3.7) to estimate the sum over k and the mean value theorem

to get

(log x)β − (log x1)
β = βξβ−1 log

x

x1
≪ (log x)β−1 log log x

for some ξ ∈ (log x1, log x). Combining (3.3.10) with (3.3.11), we obtain

∑a

k≤x

α(k)
∑
p≤x/k
p|a

α(p) log p≪ x(log x)β−A0 .

Inserting this and (3.3.9) into (3.3.8) yields

S(x; a) =
βx

log x
T (x; a) +O

`

x(log x)β−1−A0
˘

(3.3.12)

uniformly for all sufficiently large x and all a ∈ N ∩ [1, x].
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To estimate T (x; a), we repeat the argument above with α(n) replaced by α(n)/n.

From (3.1.2) it follows that

∑
p≤x

α(p)

p
log p = β log x+O

`

(log x)1−A0
˘

. (3.3.13)

Setting

U(x; a) :=
∑a

n≤x

α(n)

n
log

x

n
=

∫ x

1−

T (t; a)

t
dt, (3.3.14)

we have

T (x; a) log x =
∑a

n≤x

α(n)

n
log n+

∑a

n≤x

α(n)

n
log

x

n

=
∑a

k≤x

α(k)

k

∑a

pν≤x/k
p∤k

α(pν)

pν
log pν + U(x; a)

=
∑a

k≤x

α(k)

k

∑a

p≤x/k

α(p)

p
log p+O

¨

˚

˚

˝

∑a

k≤x

α(k)

k

∑
p≤x/k
p|k

α(p)

p
log p

˛

‹

‹

‚

+O

¨

˚

˚

˝

∑a

k≤x

α(k)

k

∑
pν≤x/k
ν≥2

α(pν)

pν
log pν

˛

‹

‹

‚

+ U(x; a)

= (β + 1)U(x; a)−
∑a

k≤x

α(k)

k

∑
p≤x/k
p|a

α(p)

p
log p+O

`

(log x)1−A0T (x; a)
˘

,
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since

∑a

k≤x

α(k)

k

∑
p≤x/k
p|k

α(p)

p
log p+

∑a

k≤x

α(k)

k

∑
pν≤x/k
ν≥2

α(pν)

pν
log pν

=
∑a

k≤x

α(k)

k

∑
pν≤x/k
ν≥2

α(p)α(pν−1) log pν−1 + α(pν) log pν

pν

≪
∑a

k≤x

α(k)

k

∑
p

˜

α(p)2

p2
log p+

∑
ν≥2

α(pν)

pν
log pν

¸

≪
∑a

k≤x

α(k)

k
= T (x; a).

In view of (3.3.13), we have

∑
p≤x/k
p|a

α(p)

p
log p ≤

∑
p≤(log x)2

α(p)

p
log p+

∑
(log x)2<p≤x

p|a

α(p)

p
log p

≪ log log x+ (log log x)ϑ0

∑
(log x)2<p≤x

p|a

log p

p

≪ log log x+ (log log x)ϑ0ω(a)
log log x

(log x)2
≪ log log x,

so that ∑a

k≤x

α(k)

k

∑
p≤x/k
p|a

α(p)

p
log p≪ (log log x)T (x; a).

It follows that

T (x; a) log x = (β + 1)U(x; a) +O
`

(log x)1−A0T (x; a)
˘

.

Hence, there exists a function ϵ(x; a) such that ϵ(x; a) = O((log x)−A0) and

T (x; a) =
1

1− ϵ(x; a)
· β + 1

log x
U(x; a) (3.3.15)
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uniformly for all sufficiently large x and all a ∈ N ∩ [1, x].

Finally, we estimate U(x; a) and T (x; a) by following the proof of [55, Theorem

A]. For y ≥ 2 and a ∈ N ∩ [1, y], let

V (y; a) := log

ˆ

β + 1

(log y)β+1
U(y; a)

˙

.

In light of (3.3.14) and (3.3.15), we have

d

dy
V (y; a) = − β + 1

y log y
+

1

U(y; a)
· d
dy
U(y; a)

= − β + 1

y log y
+

T (y; a)

U(y; a)y

=
β + 1

y log y
· ϵ(y; a)

1− ϵ(y; a)
≪ 1

y(log y)A0+1

uniformly for all sufficiently large y and all a ∈ N ∩ [1, y], which implies that

Va :=

∫ ∞

2

d

dy
V (y; a) dy <∞.

Since

V (x; a)− V (2; a) = Va −
∫ ∞

x

d

dy
V (y; a) dy = Va +O

`

(log x)−A0
˘

uniformly for all sufficiently large x and all a ∈ N ∩ [1, x], it follows that

β + 1

(log x)β+1
U(x; a) = exp(V (x; a)) = exp(Va + V (2; a))

`

1 +O
`

(log x)−A0
˘˘

.

Combining this estimate with (3.3.15), we infer

T (x; a) = exp(Va + V (2; a))(log x)β
`

1 +O
`

(log x)−A0
˘˘

(3.3.16)

uniformly for all sufficiently large x and all a ∈ N∩ [1, x]. The leading coefficient can
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be made explicit by arguing as in the proof of [55, Theorem A]. Alternatively, we can

also take advantage of (3.3.6). Fixing a ∈ N, we have by (3.3.6) with σ0 = 1 that

T (x; a) =
λα(a)

β
(log x)β

`

1 +O
`

(log x)−A0
˘˘

for all sufficiently large x. Comparing this with (3.3.16) shows that exp(Va+V (2; a)) =

λα(a)/β. Carrying this back into (3.3.16), we obtain

T (x; a) =
λα(a)

β
(log x)β

`

1 +O
`

(log x)−A0
˘˘

uniformly for all sufficiently large x and all a ∈ N ∩ [1, x]. Inserting the above into

(3.3.12) completes the proof Lemma 3.3.2.

The next result, which is key to the computation of moments, is a direct corollary

of Lemmas 3.3.1 and 3.3.2.

Lemma 3.3.3. Let α:N → R≥0 be a multiplicative function satisfying (3.1.1)–(3.1.4)

with some A0 ∈ (0, 1), β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈ [0, 1) and r ∈ (0, 1). Fix ϵ0 ∈ (0, 1).

Then there exist constants δ0 > 0 and Q0 ≥ 2, such that uniformly for all sufficiently

large x, any δ ∈ [δ0 log log x/log x, 1], and any square-free a ∈ N ∩ [1, x] with ω(a) ≤

(1− ρ0)ϵ0δ
−1, P−(a) > Q0 and P+(a) ≤ xδ, we have

∑
n≤x
a|n

α(n) = λα

ˆ

F (σ0, a) +O

ˆ

2O(ω(a))L(a)

a

ˆ

1

(log x)A0
+
ϵβ,1 logP

+(a)

log x

˙˙˙

xσ0(log x)β−1,

where L(a) is defined as in Lemma 3.3.1,

F (σ0, a) :=
∏
p|a

¨

˝1−

˜

∞∑
ν=0

α(pν)p−σ0ν

¸−1
˛

‚,
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and λα is defined by (3.3.5).

Proof. Suppose that δ0 > 0 is a constant for which Lemma 3.3.1 holds when c0 = 1

and h ∈ {β − 1, β − 1− A0}. Let Q0 ≥ 2 be such that

∞∑
ν=1

α(pν)

pσ0ν
≤ 1

2

for all p > Q0. Then we have

F (σ0, p) =
∞∑
ν=1

α(pν)

pσ0ν
+O

¨

˝

˜

∞∑
ν=1

α(pν)

pσ0ν

¸2
˛

‚=
α(p)

pσ0
+O

ˆ

ψ0(p) +
α(p)2

p2σ0

˙

(3.3.17)

for all p > Q0. For any square-free integer a ∈ [1, x] with ω(a) ≤ (1 − ϱ0)ϵ0δ
−1,

P−(a) > Q0 and P+(a) ≤ xδ, we have by Lemma 3.3.2 that

∑
n≤x

gcd(n,a)=1

α(n) = λα(a)x
σ0(log 3x)β−1

ˆ

1 +O

ˆ

1

(log 3x)A0

˙˙

. (3.3.18)

Note that ∑
n≤x
a|n

α(n) =
∑
q≤x
Rq=a

α(q)
∑

n′≤x/q
gcd(n′,a)=1

α(n′).

By (3.3.18), the main term of the inner sum contributes

λα(a)x
σ0

∑
q≤x
Rq=a

α(q)

ˆ

log
3x

q

˙β−1

,

which, by Lemma 3.3.1, is equal to

λα(a)x
σ0

ˆ

λ̃α(a) +O

ˆ

2O(ω(a))

log x

ˆ

1

xδω(a)
+
ϵβ,1L(a) logP

+(a)

a

˙˙˙

(log x)β−1

= λα

ˆ

F (σ0, a) +O

ˆ

2O(ω(a))

log x

ˆ

1

a
+
ϵβ,1L(a) logP

+(a)

a

˙˙˙

xσ0(log x)β−1,
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3.4 Computing Moments

since a ≤ xδω(a). Analogously, the contribution from the error term of the inner sum

is

≪ λα

ˆ

F (σ0, a) +
2O(ω(a))L(a) logP+(a)

a log x

˙

xσ0(log x)β−1−A0

≪ λα2
O(ω(a))L(a)

a
xσ0(log x)β−1−A0 ,

where we have used the estimate F (σ0, a) ≪ 2O(ω(a))L(a)/a, which follows directly

from (3.1.4) and (3.3.17). Combining these estimates completes the proof of Lemma

3.3.3.

Remark 3.3.1. We point out that the lower bound Q0 for ω(a) in the lemma above

is by and large an artificial thing, whose value is insignificant for our applications.

However, we need it because (3.3.17) may not hold for small primes. As we shall see

later, having such a lower bound also frees us from dealing with minor contributions

from small primes.

Section 3.4

Computing Moments

By rescaling the strongly additive function f in Theorem 3.2.1, we may assume,

without loss of generality, that |f(p)|≤ 1 for all primes p. Note that 0 ≤ F (σ0, p) < 1

for all primes p. For every p we define fp:N → R by

fp(n) :=


f(p)(1− F (σ0, p)), if p | n,

−f(p)F (σ0, p), otherwise.
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3.4 Computing Moments

Given any q ∈ N we may also extend fp via complete multiplicativity by setting

fq(n) :=
∏
pν∥q

fp(n)
ν .

It is clear that |fq(n)|≤ 1. The following result provides an approximation of the

moments of f in terms of those of fp.

Lemma 3.4.1. Let α:N → R≥0 be a multiplicative function satisfying (3.1.1)–(3.1.4)

with some A0, β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈ [0, 1) and r ∈ (0, 1). Let f :N → R be a strongly

additive function with |f(p)|≤ 1 for all primes p. Then there exists a constant Q0 ≥ 2,

such that

∑
n≤y

α(n)(f(n)− A(x))m =
∑
n≤y

α(n)

˜ ∑
Q0<p≤z

fp(n)

¸m

+O pE(y, z, w;m)q

holds uniformly for all sufficiently large x ≥ z, any y ≥ 1, and all m ∈ N, where

E(y, z, w;m) :=
∑

a+b+c=m
0≤a<m
b,c≥0

ˆ

m

a, b, c

˙

2O(m−a)
plog(v + 2)qc

∑
n≤y

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

ω(n; z, w)b,

v := log x/log z, w := x1/log(v+2), and

ω(n; z, w) :=
∑

z<p≤w
p|n

1.

Proof. Let Q0 ≥ 2 be a constant for which (3.3.17) holds. Suppose that z > Q0 is

sufficiently large. By (3.1.4), (3.3.17) and the fact that
∑

p ψ0(p) <∞, we find

∑
Q0<p≤x

f(p)F (σ0, p) = A(x) +O(1).
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3.4 Computing Moments

We compute

f(n)− A(x) =
∑
p|n

p>Q0

f(p)−
∑

Q0<p≤x

f(p)F (σ0, p) +O(1)

=
∑

Q0<p≤z
p|n

f(p) +
∑
p>z
p|n

f(p)−
∑

Q0<p≤z

f(p)F (σ0, p)−
∑

z<p≤x

f(p)F (σ0, p) +O(1)

=
∑

Q0<p≤z

fp(n) +
∑
p>z
p|n

f(p)−
∑

z<p≤x

f(p)F (σ0, p) +O(1).

By (3.3.1) we have

ˇ

ˇ

ˇ

ˇ

ˇ

∑
z<p≤x

f(p)F (σ0, p)

ˇ

ˇ

ˇ

ˇ

ˇ

≤
∑

z<p≤x

α(p)

pσ0
+O(1) ≤ β log(v + 2) +O(1).

Since ∑
p>z
p|n

|f(p)|≤
∑

z<p≤x
p|n

1 < ω(n; z, w) + log(v + 2),

it follows that

f(n)− A(x) =
∑

Q0<p≤z

fp(n) +O pω(n; z, w) + log(v + 2)q .

We have therefore proved

∑
n≤y

α(n)(f(n)− A(x))m =
∑
n≤y

α(n)

˜ ∑
Q0<p≤z

fp(n) +O pω(n; z, w) + log(v + 2)q

¸m

.

Opening the mth power on the right-hand side by means of the multinomial theorem

completes the proof of Lemma 3.4.1.

Let z = x1/v and w = x1/log(v+2) be as in Lemma 3.4.1, where v ≥ 1 is a function

of x and m to be chosen later. Fix ϵ0 ∈ (0, 1) and η0 ∈ (0, 1], and suppose that
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3.4 Computing Moments

y ∈ [xη0 , x]. Under the hypotheses in Theorem 3.2.1, we seek to estimate the weighted

moments ∑
n≤y

α(n)

˜ ∑
Q0<p≤z

fp(n)

¸m

,

appearing in Lemma 3.4.1. Expanding out the mth power we see that

∑
n≤y

α(n)

˜ ∑
Q0<p≤z

fp(n)

¸m

=
∑

Q0<p1,...,pm≤z

∑
n≤y

α(n)fp1···pm(n). (3.4.1)

This suggests that we study the sum

∑
n≤y

α(n)fq(n)

for q ∈ N with ω(q) ≤ m, P−(q) > Q0 and P+(q) ≤ z. A key observation is that

fq(n) = fq(gcd(n,Rq)). From this we deduce

∑
n≤y

α(n)fq(n) =
∑
a|Rq

fq(a)
∑
n≤y

gcd(n,Rq)=a

α(n) =
∑
ab|Rq

fq(a)µ(b)
∑
n≤y
ab|n

α(n).

Note that log y/log z ∈ [η0v, v]. By Lemma 3.3.3, there exists a constant v0 > 0,

independent of Q0 and η0, such that

∑
n≤y

α(n)fq(n) = λα
`

G(σ0, q) +O
`

2O(m)Ey(q)
˘˘

yσ0(log y)β−1 (3.4.2)

holds uniformly for all sufficiently large x, any y ∈ [xη0 , x] and v ∈ [η−1
0 , v0 log x/log log x],
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3.4 Computing Moments

and all m ≤ (1− ϱ0)ϵ0 log y/log z, where

G(σ0, q) :=
∑
ab|Rq

fq(a)µ(b)F (σ0, ab),

Ey(q) :=
∑
ab|Rq

|fq(a)|L(ab)
ab

ˆ

1

(log y)A0
+
ϵβ,1 logP

+(ab)

log y

˙

.

Combining (3.4.2) with (3.4.1) gives

∑
n≤y

α(n)

˜ ∑
Q0<p≤z

fp(n)

¸m

= λα
`

G(z) +O
`

2O(m)D(y, z)
˘˘

yσ0(log y)β−1, (3.4.3)

where

G(z) :=
∑

Q0<p1,...,pm≤z

G(σ0, p1 · · · pm),

D(y, z) :=
∑

Q0<p1,...,pm≤z

Ey(p1 · · · pm).
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3.5 Estimation of G(z) and D(y, z)

Section 3.5

Estimation of G(z) and D(y, z)

It is easy to see that G(σ0, q) is multiplicative as a function of q. Indeed, given any

q1, q2 ∈ N with gcd(q1, q2) = 1, we have

G(σ0, q1)G(σ0, q2) =
∑

a1b1|Rq1
a2b2|Rq2

fq1(a1)fq2(a2)µ(b1)µ(b2)F (σ0, a1b1)F (σ0, a2b2)

=
∑

a1b1|Rq1
a2b2|Rq2

fq1(a1a2)fq2(a1a2)µ(b1b2)F (σ0, a1a2b1b2)

=
∑

a1b1|Rq1
a2b2|Rq2

fq1q2(a1a2)µ(b1b2)F (σ0, a1a2b1b2)

=
∑

ab|Rq1q2

fq1q2(a)µ(b)F (σ0, ab) = G(σ0, q1q2).

Furthermore, we have

G(σ0, p
ν) = fpν (1) + fpν (p)F (σ0, p)− fpν (1)F (σ0, p)

= (−f(p)F (σ0, p))ν + (f(p)(1− F (σ0, p)))
νF (σ0, p)− (−f(p)F (σ0, p))νF (σ0, p)

= f(p)νF (σ0, p)(1− F (σ0, p))
`

(−1)νF (σ0, p)
ν−1 + (1− F (σ0, p))

ν−1
˘

for all prime powers pν . Note that G(σ0, p) = 0, |G(σ0, pν)|≤ 1/4, and G(σ0, p
ν) ≥ 0

when 2 | ν. In addition, we have by (3.3.17) that

G(σ0, p
2) = f(p)2F (σ0, p)(1− F (σ0, p)) = α(p)

f(p)2

pσ0
+O

ˆ

ψ0(p) +
α(p)2

p2σ0

˙

(3.5.1)
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and that

|G(σ0, pν)|≤ |f(p)|νF (σ0, p) ≤ α(p)
f(p)2

pσ0
+O

ˆ

ψ0(p) +
α(p)2

p2σ0

˙

(3.5.2)

for all pν with p > Q0 and ν ≥ 2.

Now we proceed to estimate G(z) in the main term of (3.4.3). Recall that y ∈

[xη0 , x] and z = x1/v. We shall suppose in this section that 1 ≤ m ≤ min(v, h0B(x)1/3),

log(v+2) = o(B(x)), and m log(v+2) ≪ B(x), where 0 < h0 < (3/2)2/3 is any given

constant, and obtain a uniform treatment for G(z) and D(y, z) under this more gen-

eral assumption. Since G(σ0, q) is multiplicative in q and G(σ0, p) = 0 for all p > Q0,

we have

G(z) =
∑

Q0<p1,...,pm≤z
p1···pm square-full

G(σ0, p1 · · · pm). (3.5.3)

When 2 | m, the main contribution arises from

m!

(m/2)! 2m/2

∑
Q0<p1,...,pm/2≤z
p1,...,pm/2 distinct

G(σ0, p
2
1 · · · p2m/2) = Cm

∑
Q0<p1,...,pm/2≤z
p1,...,pm/2 distinct

m/2∏
i=1

G(σ0, p
2
i ),

(3.5.4)

since the number of ways to partition a set of m elements into m/2 two-element

equivalence classes is

m!

(m/2)! 2m/2
=

m!

m! !
= Cm.

The sum on the right-hand side of (3.5.4) can be rewritten as

∑
Q0<p1,...,pm/2−1≤z
p1,...,pm/2−1 distinct

m/2−1∏
i=1

G(σ0, p
2
i )

∑
Q0<pm/2≤z

pm/2 ̸=p1,...,pm/2−1

G(σ0, p
2
m/2).
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By (3.5.1) and (3.3.1), the inner sum over pm/2 is equal to

∑
Q0<p≤z

G(σ0, p
2)−

m/2−1∑
i=1

G(σ0, p
2
i ) = B(z)+O

˜ ∑
Q0<p≤qN

α(p)

pσ0

¸

= B(z)+O plog log(m+ 2)q ,

where N = m/2 + π(Q0) and qN is the Nth prime. Repeating this argument we

obtain ∑
Q0<p1,...,pm/2≤z
p1,...,pm/2 distinct

m/2∏
i=1

G(σ0, p
2
i ) = pB(z) +O plog log(m+ 2)qq

m/2 .

But

B(x)−B(z) =
∑

z<p≤x

α(p)
f(p)2

pσ0
≤ β log(v + 2) +O(1).

Hence when m is even, the main contribution to G(z) is given by

Cm pB(x) +O(log(v + 2))qm/2 = CmB(x)
m
2

`

1 +O
`

mB(x)−1 log(v + 2)
˘˘

.

The remaining contribution to G(z) comes from

∑
s<m/2

∑
Q0<p1<...<ps≤z

∑
k1+···+ks=m
k1,...,ks≥2

ˆ

m

k1, ..., ks

˙ s∏
i=1

G(σ0, p
ki
i ). (3.5.5)

Since (3.5.5) vanishes when m ≤ 2, we may suppose m ≥ 3. By (3.5.2) we see that

s∏
i=1

ˇ

ˇG(σ0, p
ki
i )

ˇ

ˇ ≤
s∏

i=1

ˆ

α(pi)
f(pi)

2

pσ0
i

+O

ˆ

ψ0(pi) +
α(pi)

2

p2σ0
i

˙˙

.

Thus, we have

∑
Q0<p1<...<ps≤z

s∏
i=1

ˇ

ˇG(σ0, p
ki
i )

ˇ

ˇ ≤ 1

s!
(B(x)+O(1))s =

1

s!
B(x)s

`

1 +O
`

sB(x)−1
˘˘

≪ B(x)s

s!
.
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Since ∑
k1+···+ks=m
k1,...,ks≥2

ˆ

m

k1, ..., ks

˙

≤ m!

2s

∑
k1+···+ks=m
k1,...,ks≥2

1 =
m!

2s

ˆ

m− s− 1

s− 1

˙

,

(3.5.5) is

≪ m!
∑

s<m/2

1

s! 2s

ˆ

m− s− 1

s− 1

˙

B(x)s.

To estimate the sum above, we put m1 := ⌊(m− 1)/2⌋ and observe that

∑
s<m/2

1

s! 2s

ˆ

m− s− 1

s− 1

˙

B(x)s = B(x)m1

∑
s≤m1

1

s! 2s

ˆ

m− s− 1

s− 1

˙

B(x)s−m1

≤ B(x)m1m−3m1

∑
s≤m1

1

s! 2s

ˆ

m− s− 1

s− 1

˙

h
3(m1−s)
0 m3s,

where we have used the assumption that B(x) ≥ m3/h30 with some 0 < h0 < (3/2)2/3.

Let

em :=


1, if 2 | m,

1/2, otherwise.

Then m1 = m/2− em. Note that

m−3m1

∑
s≤m/4

1

s! 2s

ˆ

m− s− 1

s− 1

˙

h
3(m1−s)
0 m3s ≤ m−3m1

∑
s≤m/4

1

s! (s− 1)!

ˆ

9

4

˙m1−s ˆ

m4

2

˙s

≪ m−3m1

ˆ

9

4

˙m1
ˆ

m4

2

˙m/4

≪ Cm

m!
m3em ,

since

Cm

m!
=

1

2m/2Γ(m/2 + 1)
≍ m−m+1

2 e
m
2
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by Stirling’s formula. Next, we have

m−3m1

∑
m/4<s≤m/3

1

s! 2s

ˆ

m− s− 1

s− 1

˙

h
3(m1−s)
0 m3s ≤ 2O(m)m−3m1

∑
m/4<s≤m/3

1

s! (s− 1)!

ˆ

m4

2

˙s

≤ 2O(m)m−3m1

mm/2

∑
m/4<s≤m/3

ˆ

m4

2

˙s

≤ 2O(m)m−3m1

mm/2
m4m/3

= 2O(m)m−2m/3+3em ≪ Cm

m!
m3em .

Finally, we observe that

m−3m1

∑
m/3<s≤m1

1

s! 2s

ˆ

m− s− 1

s− 1

˙

h
3(m1−s)
0 m3s

= m−3m1

∑
m/3<s≤m1

1

s! 2s

ˆ

m− s− 1

m− 2s

˙

h
3(m1−s)
0 m3s

≤ m−3m1

∑
m/3<s≤m1

1

s! 2s
(m− s)m−2sh

3(m1−s)
0 m3s

≤ m−3m1

m1!

∑
m/3<s≤m1

m1!

s! 2s

ˆ

2m

3

˙m−2s

h
3(m1−s)
0 m3s

≤ m−3m1

m1!

∑
m/3<s≤m1

1

2s

´m

2

¯m1−s
ˆ

2m

3

˙m−2s

h
3(m1−s)
0 m3s

≪ mm−2m1

m1! 2m/2

∑
m/3<s≤m1

˜

2h
3/2
0

3

¸m−2s

≪ Cm

m!
m3em .

Collecting the estimates above, we see that the contribution to G(z) from (3.5.5) is

≪ Cmm
3emB(x)m1 = CmB(x)

m
2

ˆ

m3

B(x)

˙em

≤ CmB(x)
m
2

m
3
2

a

B(x)
.
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We can therefore conclude that

G(z) = CmB(x)
m
2

˜

χm

ˆ

1 +O

ˆ

m log(v + 2)

B(x)

˙˙

+O

˜

m
3
2

a

B(x)

¸¸

. (3.5.6)

Next, we estimate D(y, z) in the error term of (3.4.3). By definition, we have

D(y, z) =
∑
s≤m

∑
Q0<p1<...<ps≤z

∑
k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙

Ey

`

pk11 · · · pkss
˘

.

Let

H(σ0, q) :=
∑
ab|Rq

|fq(a)|L(ab)
ab

.

Then H(σ0, q) is multiplicative in q. Moreover, we have

Ey(q) ≤ H(σ0, q)

ˆ

1

(log y)A0
+
ϵβ,1 logP

+(q)

log y

˙

.

It follows that D(y, z) ≤ D1(y, z) + ϵβ,1D2(y, z), where

D1(y, z) :=
1

(log y)A0

∑
s≤m

∑
Q0<p1<...<ps≤z

∑
k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙ s∏
i=1

H(σ0, p
ki
i ),

D2(y, z) :=
1

log y

∑
s≤m

∑
Q0<p1<...<ps≤z

log ps
∑

k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙ s∏
i=1

H(σ0, p
ki
i ).

By Mertens’ theorems [35, Theorems 425, 427] we have, for any t ≥ 3, that

∑
p≤t

(log log(p+ 1))ϑ0

p
=

1

ϑ0 + 1
(log log t)ϑ0+1 +O(1) (3.5.7)
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and that

∑
p≤t

(log log(p+ 1))ϑ0 log p

p
=

ˆ

1 +O

ˆ

1

log t
+

ϑ0

log log t

˙˙

(log log t)ϑ0 log t. (3.5.8)

Furthermore, let

Tn(t) :=
n∑

k=0

{
n

k

}
tk

denote the nth Touchard polynomial, where

{
n

k

}
:=

1

k!

∑
n1+···+nk=n
n1,...,nk∈N

ˆ

n

n1, ..., nk

˙

is the kth Stirling number of the second kind of size n. The sequence {Tn(t)}∞n=0 of

the Touchard polynomials is known to satisfy the recurrence relation

Tn+1(t) = t
n∑

i=0

ˆ

n

i

˙

Ti(t),

from which one verifies readily by induction that

Tn(t) ≤
ˆ

t+
n− 1

2

˙n

(3.5.9)

for all n ≥ 1 and t ≥ 0. Since

H(σ0, p
ν) = |f(p)|F (σ0, p)

ˆ

1 +
L(p)

p

˙

+
|f(p)|L(p)

p
(1− F (σ0, p))

= |f(p)|
ˆ

F (σ0, p) +
(log log(p+ 1))ϑ0

p

˙

for any prime powers pν with p > Q0, we obtain, from (3.3.17), (3.5.7), (3.5.8) and
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(3.5.9), that

D1(y, z) ≤
2O(m)

(log x)A0

∑
s≤m

1

s!
(log log z)s(ϑ0+1)

∑
k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙

≤ 2O(m)

(log x)A0
Tm

`

(log log z)ϑ0+1
˘

≤ 2O(m)

(log x)A0
(log log x)m(ϑ0+1),

and that

D2(y, z) ≤
2O(m) log z

log x

∑
s≤m

1

(s− 1)!
(log log z)s(ϑ0+1)−1

∑
k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙

≤ 2O(m)

v log log z
Tm

`

(log log z)ϑ0+1
˘

≤ 2O(m)

v
(log log x)m(ϑ0+1)−1.

Hence, we conclude that

D(y, z) ≤ 2O(m)(log log x)m(ϑ0+1)−1

ˆ

log log x

(log x)A0
+
ϵβ,1
v

˙

. (3.5.10)

Section 3.6

Estimation of E(y, z, w;m)

In this section, we seek to bound the function E(y, z, w;m) introduced in Lemma 3.4.1

under the assumptions in Theorem 3.2.1. We start with the case β = 1. Suppose

that 1 ≤ m ≤ h0B(x)1/3, where 0 < h0 < (3/2)2/3 is any given constant. Recall that

y ∈ [xη0 , x], z = x1/v and w = x1/log(v+2). With the choice v = (1 − ϱ0)
−1ϵ−1

0 η−1
0 m,

we clearly have v ∈ [η−1
0 , v0 log x/log log x] and m ≤ (1 − ϱ0)ϵ0 log y/log z. Inputting
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3.6 Estimation of E(y, z, w;m)

(3.5.6) and (3.5.10) into (3.4.3), we obtain

∑
n≤y

α(n)

˜ ∑
Q0<p≤z

fp(n)

¸m

= λαCmB(x)
m
2

˜

χm +O

˜

m
3
2

a

B(x)

¸¸

yσ0 . (3.6.1)

The key lies in the estimation of the sum

∑
n≤y

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

ω(n; z, w)b. (3.6.2)

In the present case, we may simply use the trivial bound ω(n; z, w) ≪ v ≪ m, so

that (3.6.2) is bounded above by

2O(b)mb
∑
n≤y

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

.

It is clear that we can use (3.6.1) to handle the sum above. If a is even, then this

sum is ≪ λαCaB(x)
a
2 yσ0 ; if a is odd, then it is

≤

¨

˝

∑
n≤y

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a−1
˛

‚

1/2 ¨

˝

∑
n≤y

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a+1
˛

‚

1/2

≪ λα
a

Ca−1Ca+1B(x)
a
2 yσ0

by the Cauchy–Schwarz inequality. The sequence {Cℓ}∞ℓ=1 is strictly increasing, which

can be easily seen from the identity

Cℓ+1

Cℓ

=
ℓ+ 1
?
2

· Γ(ℓ/2 + 1)

Γ((ℓ+ 1)/2 + 1)
=

?
2 · Γ(ℓ/2 + 1)

Γ((ℓ/2 + 1/2)
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3.6 Estimation of E(y, z, w;m)

and the fact that Γ(y) is strictly increasing on [3/2,∞). Moreover, we have by

Stirling’s formula that

Cℓ

Cℓ+1

≪ 1

ℓ+ 1
· ((ℓ+ 1)/2)ℓ/2+1e−(ℓ+1)/2

(ℓ/2)(ℓ+1)/2e−ℓ/2
≪ 1

?
ℓ+ 1

,

which implies that

Ca ≤ 2O(m−a)Cm

c

a!

m!
≤ 2O(m−a)Cm

c

aa

mm
≤ 2O(m−a)Cm

p
?
mq

m−a

for all 0 ≤ a ≤ m. Hence, (3.6.2) is bounded above by

2O(m−a)λαCmm
b

p
?
mq

m−a B(x)
a
2 yσ0 ≤ 2O(m−a)λαCm

`?
m

˘m−a
B(x)

a
2 yσ0 .

Inputting this inequality into the definition of E(y, z, w;m), we conclude that

E(y, z, w;m) ≤ λαCmy
σ0

m−1∑
a=0

ˆ

m

a

˙

B(x)
a
2

`

O
`?

m
˘˘m−a ≪ λαCmm

3
2B(x)

m−1
2 yσ0 .

(3.6.3)

Now we consider the case β ̸= 1. Suppose that 1 ≤ m≪ B(x)1/3/(log log log x)2/3

and thatB(x)/(log log log x)2 → ∞ as x→ ∞. In this case we take v = (log log x)m(ϑ0+2),

so that v ∈ [2η−1
0 , v0 log x/log log x] and m ≤ (1−ϱ0)ϵ0 log t/log z for any t ∈ [xη0/2, x]

when x is sufficiently large. Inserting (3.5.6) and (3.5.10) into (3.4.3) leads to

∑
n≤t

α(n)

˜ ∑
Q0<p≤z

fp(n)

¸m

= λαCmB(x)
m
2

˜

χm +O

˜

m
3
2

a

B(x)

¸¸

tσ0(log t)β−1

(3.6.4)

uniformly for all t ∈ [xη0/2, x]. Again, we need to estimate (3.6.2) uniformly for
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3.6 Estimation of E(y, z, w;m)

y ∈ [xη0 , x]. Note that (3.6.2) can be rewritten as

b∑
k=1

∑
z<p1<...<pk≤w

∑
l1+···+lk=b
l1,...,lk≥1

ˆ

b

l1, ..., lk

˙ ∑
n≤y

p1···pk|n

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

.

Observe that

∑
n≤y

p1···pk|n

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

=
∑
q≤y

Rq=p1···pk

α(q)
∑

n′≤y/q
gcd(n′,q)=1

α(n′)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n
′)

ˇ

ˇ

ˇ

ˇ

ˇ

a

≤
∑
q≤y

Rq=p1···pk

α(q)
∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

,

since p1, ..., pk > p. If q = pν11 · · · pνkk >
?
y with given z < p1 < ... < pk ≤ w, then we

have the trivial estimate

∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

≤ π(z)a
∑

n≤3y/q

α(n) ≪ λαπ(z)
a

ˆ

y

q

˙σ0
ˆ

log
3y

q

˙β−1

by (3.3.4) and the fact that |fp(n)|≤ 1. By the proof of Lemma 3.3.1, and particularly

by (3.3.3), we find that

∑
?
y<q≤y

Rq=p1···pk

α(q)

qσ0

ˆ

log
3y

q

˙β−1

=
∑

?
y<p

ν1
1 ···pνkk ≤y

ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

ˆ

log
3y

pν11 · · · pνkk

˙β−1

≪ 2O(k)(log y)k+β−2

`?
y

˘1−ϱ0
,

from which it follows that

∑
?
y<q≤y

Rq=p1···pk

α(q)
∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

≪ λαπ(z)
a2

O(k)yσ0(log y)k+β−2

`?
y

˘1−ϱ0
.
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3.6 Estimation of E(y, z, w;m)

Summing the above over all z < p1 < ... < pk ≤ w yields immediately

∑
z<p1<...<pk≤w

∑
?
y<q≤y

Rq=p1···pk

α(q)
∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

≤ λαπ(z)
aπ(w)k

2O(k)yσ0(log y)k+β−2

k!
`?

y
˘1−ϱ0

≤ λαy
σ0(log y)β−1

k! p 3
?
yq

1−ϱ0
(3.6.5)

for sufficiently large x, since y ∈ [xη0 , x], a+ k ≤ m≪ (log log x)1/3/(log log log x)2/3,

and

π(z)aπ(w)k ≤
ˆ

w

logw
+O

ˆ

w

(logw)2

˙˙m

≪
ˆ

w

logw

˙m

≤ x1/log log log x(m log log log x)m

(log x)m
.

If q = pν11 · · · pνkk ≤ ?
y, then xη0/2 ≤ ?

y ≤ y/q ≤ y ≤ x. Thus, we can apply (3.6.4)

with t = y/q to handle ∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

.

If a is even, then this sum is

≪ λαCaB(x)
a
2

ˆ

y

q

˙σ0
ˆ

log
y

q

˙β−1

≤ 2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2

ˆ

y

q

˙σ0
ˆ

log
y

q

˙β−1

;

if a is odd, then it is

≤

¨

˝

∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a−1
˛

‚

1/2 ¨

˝

∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a+1
˛

‚

1/2

≪ λα
a

Ca−1Ca+1B(x)
a
2

ˆ

y

q

˙σ0
ˆ

log
y

q

˙β−1

≤ 2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2

ˆ

y

q

˙σ0
ˆ

log
y

q

˙β−1
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3.6 Estimation of E(y, z, w;m)

by Cauchy–Schwarz. It follows that

∑
q≤?

y
Rq=p1···pk

α(q)
∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

≤ 2O(m−a)λαCmy
σ0

p
?
mq

m−a B(x)
a
2

∑
q≤?

y
Rq=p1···pk

α(q)

qσ0

ˆ

log
y

q

˙β−1

≤ 2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2 yσ0(log y)β−1

k∏
i=1

∞∑
ν=1

α(pνi )

pσ0ν
i

=
2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2 yσ0(log y)β−1

k∏
i=1

ˆ

α(pi)

pσ0
i

+ ψ0(pi)

˙

for all 0 ≤ a < m. Since (3.3.1) implies that

∑
z<p1<...<pk≤w

k∏
i=1

ˆ

α(pi)

pσ0
i

+ ψ0(pi)

˙

≤ 1

k!

˜ ∑
z<p≤w

ˆ

α(p)

pσ0
+ ψ0(p)

˙

¸k

≤ 2O(k)

k!
(log v)k,

we obtain

∑
z<p1<...<pk≤w

∑
q≤?

y
Rq=p1···pk

α(q)
∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

≤ 2O(m−a)λαCm

k! p
?
mq

m−a (log v)kB(x)
a
2 yσ0(log y)β−1. (3.6.6)

Combining (3.6.6) with (3.6.5) and extending the inner sum over q to the entire range,

we conclude that

∑
z<p1<...<pk≤w

∑
q≤y

Rq=p1···pk

α(q)
∑
n≤y/q

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

≤ 2O(m−a)λαCm

k! p
?
mq

m−a (log v)kB(x)
a
2 yσ0(log y)β−1.
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Hence, (3.6.2) is bounded above by

2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2 yσ0(log y)β−1

b∑
k=1

(log v)k

k!

∑
l1+···+lk=b
l1,...,lk≥1

ˆ

b

l1, ..., lk

˙

=
2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2 yσ0(log y)β−1

b∑
k=1

{
b

k

}
(log v)k

≤ 2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2Tb(log v)y

σ0(log y)β−1.

It follows by (3.5.9) that the above does not exceed

2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2 (log v)byσ0(log y)β−1,

where we have used the observation that log v > m log log log x > m ≥ b. In other

words, we have shown that

∑
n≤y

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
Q0<p≤z

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

a

ω(n; z, w)b ≤ 2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2 (log v)byσ0(log y)β−1.

Inputting this inequality into the definition of E(y, z, w;m), we conclude that

E(y, z, w;m) ≤ λαCmy
σ0(log y)β−1

m−1∑
a=0

ˆ

m

a

˙

B(x)
a
2

ˆ

O

ˆ

log v
?
m

˙˙m−a

≪ λαCm

?
m(log v)B(x)

m−1
2 yσ0(log y)β−1

≪ λαCmm
3
2 (log log log x)B(x)

m−1
2 yσ0(log y)β−1. (3.6.7)
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Section 3.7

Deduction of Theorems 3.2.1 and 3.2.2

Theorem 3.2.1 now follows immediately upon combining (3.6.1) and (3.6.4) with

(3.6.3) and (3.6.7) and invoking Lemma 3.4.1 and (3.3.4). In fact, we have shown

that the same asymptotic formulas which hold for M(x;m) also hold for

S(y)−1
∑
n≤y

α(n)(f(n)− A(x))m (3.7.1)

uniformly in the range y ∈ [xη0 , x], where η0 ∈ (0, 1] is any fixed constant.

Now we prove Theorem 3.2.2. Recall that under the hypotheses in Theorem 3.2.2,

the multiplicative function α(n) satisfies conditions (i)–(iv). We shall again suppose

A0 ∈ (0, 1) throughout the proof. Define the strongly additive function f̃ :N → R,

called the strongly additive contraction of f , by f̃(p) = f(p) for all primes p. Then

∑
n≤x

α(n)(f(n)− A(x))m =
m∑
k=0

ˆ

m

k

˙∑
n≤x

α(n)
´

f̃(n)− A(x)
¯k ´

f(n)− f̃(n)
¯m−k

(3.7.2)

for every m ∈ N. The term corresponding to k = m can be estimated directly using

Theorem 3.2.1. Hence, it remains to deal with

∑
n≤x

α(n)
´

f̃(n)− A(x)
¯k ´

f(n)− f̃(n)
¯l

(3.7.3)
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for 0 ≤ k < m and l = m− k. Note that

ˇ

ˇ

ˇ

ˇ

ˇ

∑
n≤x

α(n)
´

f̃(n)− A(x)
¯k ´

f(n)− f̃(n)
¯l

ˇ

ˇ

ˇ

ˇ

ˇ

≤
∑
n≤x

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∑
pν∥n,ν≥2

(f(pν)− f(p))

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

l

≤
∑

p1,...,pl≤
?
x

∑
p
ν1
1 ,...,p

νl
l ≤x

ν1,...,νl≥2

|f(pν11 )− f(p1)|· · · |f(pνll )− f(pl)|
∑
n≤x

p
ν1
1 ,...,p

νl
l ∥n

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

.

Since f(pν) = O(νκ) for all pν , the last expression above does not exceed

2O(l)
∑
s≤l

∑
p1<...<ps≤

?
x

∑
l1+···+ls=l
l1,...,ls∈N

ˆ

l

l1, ..., ls

˙ ∑
p
ν1
1 ···pνss ≤x
ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

.

If we write n = pν11 · · · pνss n′ with gcd(n′, p1 · · · ps) = 1, then it is clear that

ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

=

ˇ

ˇ

ˇ

ˇ

ˇ

f̃(n′)− A(x) +
s∑

i=1

f(pi)

ˇ

ˇ

ˇ

ˇ

ˇ

k

≤
k∑

a=0

ˆ

k

a

˙

ˇ

ˇ

ˇ
f̃(n′)− A(x)

ˇ

ˇ

ˇ

a

ˇ

ˇ

ˇ

ˇ

ˇ

s∑
i=1

f(pi)

ˇ

ˇ

ˇ

ˇ

ˇ

k−a

.

Thus, the innermost sum of α(n)|f̃(n)− A(x)|k is

≤ α(pν11 ) · · ·α(pνss )
k∑

a=0

ˆ

k

a

˙

ˇ

ˇ

ˇ

ˇ

ˇ

s∑
i=1

f(pi)

ˇ

ˇ

ˇ

ˇ

ˇ

k−a ∑
n≤x/pp

ν1
1 ···pνss q

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

a

, (3.7.4)

where we have dropped the superscript of n for simplicity of notation. Since the right-

hand side of the above clearly vanishes if p1 · · · ps >
?
x, we may assume p1 · · · ps ≤

?
x

instead. Let λ′ := 1 − ϱ0 − log2 λ > ρ0, and choose a constant max(1/2,
a

ϱ0/λ′) <

δ0 < 1, so that 1 − ϱ0 + δ20λ
′ > 1. Let xs := x/(p1 · · · ps) and ys := xδ0s . Then

xs ≥
?
x ≥ p1 · · · ps. If pν11 · · · pνss > p1 · · · psys with given p1 < ... < ps, then we use
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the trivial estimate

∑
n≤x/pp

ν1
1 ···pνss q

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

a

≪ 2O(a)(log x)a
∑

n≤x/pp
ν1
1 ···pνss q

α(n)

≪ λα2
O(a)(log x)a

ˆ

x

pν11 · · · pνss

˙σ0
ˆ

log
3x

pν11 · · · pνss

˙β−1

.

Thus, (3.7.4) is

≪ α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

ˆ

log
3x

pν11 · · · pνss

˙β−1

λα2
O(k)xσ0(log x)k.

Since α(pν) = O((λpϱ0+σ0−1)ν) for all pν , we have

∑
p1···psys<p

ν1
1 ···pνss ≤x

ν1,...,νs≥2

νκl11 · · · νκlss

α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

ˆ

log
3x

pν11 · · · pνss

˙β−1

≤ 2O(l)
∑

p1···psys<p
ν1
1 ···pνss ≤x

ν1,...,νs≥2

νκl11 · · · νκlss

ˆ

λ

p1−ϱ0
1

˙ν1

· · ·
ˆ

λ

p1−ϱ0
s

˙νs ˆ

log
3x

pν11 · · · pνss

˙β−1

≤ 2O(l)

(p1 · · · ps)1−ϱ0

∑
ys<p

ν1
1 ···pνss ≤xs

ν1,...,νs≥1

νκl11 · · · νκlss

ˆ

λ

p1−ϱ0
1

˙ν1

· · ·
ˆ

λ

p1−ϱ0
s

˙νs ˆ

log
3xs

pν11 · · · pνss

˙β−1

.

It is not hard to see that the proof of (3.3.3) also gives

∑
z1<pν≤z2

ˆ

λ

p1−ϱ0

˙ν ˆ

log
3z2
pν

˙β−1

≪ (log(3z2/z1))
β−1

z
1−ϱ0−logp λ

1
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uniformly for all primes p and all 0 < z1 ≤ z2. Thus, we have

∑
ys<p

ν1
1 ···pνss ≤xs

ν1,...,νs≥1

νκl11 · · · νκlss

ˆ

λ

p1−ϱ0
1

˙ν1

· · ·
ˆ

λ

p1−ϱ0
s

˙νs ˆ

log
3xs

pν11 · · · pνss

˙β−1

≤ 2O(l)(log x)κl
∑

ys<p
ν1
1 ···pνss ≤xs

ν1,...,νs≥1

ˆ

λ

p1−ϱ0
1

˙ν1

· · ·
ˆ

λ

p1−ϱ0
s

˙νs ˆ

log
3xs

pν11 · · · pνss

˙β−1

≤ 2O(l)(log x)κl
∑

p
ν2
2 ···pνss ≤xs

ν2,...,νs≥1

˜

λ

p
logp1 λ

2

¸ν2

· · ·

˜

λ

p
logp1 λ
s

¸νs
(log(3xs/ys))

β−1

y
1−ϱ0−logp1 λ
s

≤ 2O(l)(log x)(κ+1)m+β−2

xδ0(1−δ0)λ′/2(p1 · · · ps)δ
2
0λ

′ ≤
2O(l)(log x)β−1

x(1−δ0)λ′/5(p1 · · · ps)δ
2
0λ

′ ,

where the penultimate inequality follows from the previous line together with the

observations that plog p1λi > λ for all 2 ≤ i ≤ s, that x(1+δ0)/2 ≥ (p1 · · · ps)1+δ0 , and

that

y
1−ϱ0−logp1 λ
s ≥ yλ

′

s =

ˆ

x(1−δ0)/2 · x
(1+δ0)/2

p1 · · · ps

˙δ0λ′

≥ xδ0(1−δ0)λ′/2(p1 · · · ps)δ
2
0λ

′
.

It follows that

∑
p1···psys<p

ν1
1 ···pνss ≤x

ν1,...,νs≥2

νκl11 · · · νκlss

α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

ˆ

log
3x

pν11 · · · pνss

˙β−1

≤ 2O(l)

(p1 · · · ps)1−ϱ0+δ20λ
′ x

−(1−δ0)λ′/5(log x)β−1,

124



3.7 Deduction of Theorems 3.2.1 and 3.2.2

from which we deduce that

∑
p1<...<ps≤

?
x

∑
p1···psys<p

ν1
1 ···pνss ≤x

ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

≤ 2O(m)λαx
σ0−(1−δ0)λ′/5(log x)k+β−1

∑
p1<...<ps≤

?
x

1

(p1 · · · ps)1−ϱ0+δ20λ
′

≤ 1

s!
λαx

σ0−(1−δ0)λ′/6(log x)β−1. (3.7.5)

On the other hand, if pν11 · · · pνss ≤ p1 · · · psys, then x(1−δ0)/2 ≤ x/(pν11 · · · pνss ) ≤ x.

Thus, we can apply the asymptotic formulas for (3.7.1) with η0 = (1 − δ0)/2 and

y = x/(pν11 · · · pνss ), in conjunction with the Cauchy–Schwarz inequality, to estimate

the inner sum in (3.7.4). As a consequence, we have

∑
n≤x/pp

ν1
1 ···pνss q

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

a

≪ 2O(m−a)λαCm

p
?
mq

m−a B(x)
a
2

ˆ

x

pν11 · · · pνss

˙σ0
ˆ

log
x

pν11 · · · pνss

˙β−1

.

Inserting this into (3.7.4) shows that the sum

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

is

≤ 2O(m−k)λαCm

p
?
mq

m−k
· α(p

ν1
1 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

˜

a

B(x) +O

˜

1
?
m

s∑
i=1

|f(pi)|

¸¸k

xσ0(log x)β−1

=
2O(l)λαCm

ml/2
· α(p

ν1
1 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s
B(x)

k
2

ˆ

1 +O

ˆ

c

m

B(x)

˙˙

xσ0(log x)β−1

≤ 2O(l)λαCm

ml/2
· α(p

ν1
1 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s
B(x)

k
2xσ0(log x)β−1.

125



3.7 Deduction of Theorems 3.2.1 and 3.2.2

Note that

∑
p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

≤ 2O(l)
∑

p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

ˆ

λ

p1−ϱ0
1

˙ν1

· · ·
ˆ

λ

p1−ϱ0
s

˙νs

≤ 2O(l)

(p1 · · · ps)1−ϱ0

∑
p
ν1
1 ···pνss ≤ys
ν1,...,νs≥1

νκl11 · · · νκlss

ˆ

λ

p1−ϱ0
1

˙ν1

· · ·
ˆ

λ

p1−ϱ0
s

˙νs

≤ 2O(l)

(p1 · · · ps)1−ϱ0

s∏
i=1

Li−⌈κli⌉
`

λ/p1−ϱ0
i

˘

,

where

Li−ℓ(ζ) :=
∞∑
n=1

nℓζn

is the polylogarithm function of order −ℓ and complex argument ζ with |ζ|< 1, where

ℓ ≥ 0 is any integer. For example, Li0(ζ) = ζ/(1− ζ) and Li−1(ζ) = ζ/(1− ζ)2. The

function Li−ℓ(ζ) can be expressed in terms of the Eulerian polynomial Aℓ(ζ):

Li−ℓ(ζ) =
ζAℓ(ζ)

(1− ζ)ℓ+1
,

where

Aℓ(ζ) :=
ℓ∑

j=0

〈
ℓ

j

〉
ζj

is the ℓth Eulerian polynomial, and

〈
ℓ

j

〉
:=

j∑
a=0

(−1)a
ˆ

ℓ+ 1

a

˙

(j + 1− a)ℓ

is the jth Eulerian number of size ℓ. Combinatorially, it is known that, for every
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ℓ ≥ 1, 〈
ℓ

j

〉
= #{τ ∈ Sℓ: τ has exactly j ascents},

where Sℓ is the set of all permutations of {1, ..., ℓ}. Using this combinatorial intepre-

tation one finds that Aℓ(1) = #Sℓ = ℓ!. Since l1 + · · ·+ ls = l ≤ m, we have

s∏
i=1

Li−⌈κli⌉
`

λ/p1−ϱ0
i

˘

≤ 2O(l)⌈κl1⌉! · · · ⌈κls⌉!
(p1 · · · ps)1−ϱ0

=
2O(l)

`

ll11 · · · llss
˘κ

(p1 · · · ps)1−ϱ0
≤ 2O(l)mκl

(p1 · · · ps)1−ϱ0
,

by Stirling’s formula. Hence, we obtain

∑
p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s
≤ 2O(l)mκl

(p1 · · · ps)2(1−ϱ0)
.

It follows that

∑
p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

≤ 2O(l)λαCmm
κl

ml/2(p1 · · · ps)2(1−ϱ0)
B(x)

k
2xσ0(log x)β−1.

Summing the above over p1 < ... < ps ≤
?
x, we arrive at

∑
p1<...<ps≤

?
x

∑
p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

≤ 2O(l)λαCmm
(κ−1/2)lB(x)

k
2xσ0(log x)β−1

∑
p1<...<ps≤

?
x

1

(p1 · · · ps)2(1−ϱ0)

≤ 2O(l)

s!
λαCmm

(κ−1/2)lB(x)
k
2xσ0(log x)β−1,
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3.8 Proof of Theorem 3.2.3 (sketch)

since ϱ0 ∈ [0, 1/2). Combining this estimate with (3.7.5), we obtain

∑
p1<...<ps≤

?
x

∑
p
ν1
1 ···pνss ≤x
ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)
ˇ

ˇ

ˇ
f̃(n)− A(x)

ˇ

ˇ

ˇ

k

≤ 2O(l)

s!
λαCmm

(κ−1/2)lB(x)
k
2xσ0(log x)β−1.

Therefore, (3.7.3) is bounded above by

2O(l)λαCmm
(κ−1/2)lB(x)

k
2xσ0(log x)β−1

∑
s≤l

1

s!

∑
l1+···+ls=l
l1,...,ls∈N

ˆ

l

l1, ..., ls

˙

≤ 2O(l)λαCmm
(κ−1/2)lB(x)

k
2xσ0(log x)β−1Tl(1)

≤ 2O(l)Cmm
(κ+1/2)lB(x)

k
2S(x),

which allows us to conclude that

m−1∑
k=0

ˆ

m

k

˙∑
n≤x

α(n)
´

f̃(n)− A(x)
¯k ´

f(n)− f̃(n)
¯m−k

≪ Cmm
κ+ 3

2B(x)
m−1

2 S(x),

provided that in addition, we also have 1 ≤ m ≪ B(x)1/(2κ+3). Inserting the above

estimate and the estimate for the term corresponding to k = m into (3.7.2) completes

the proof of Theorem 3.2.2.

Section 3.8

Proof of Theorem 3.2.3 (sketch)

Now we outline the proof of Theorem 3.2.3. The first step is to redefine fq(n) intro-

duced in Section 3.4. Again, let us suppose that A0 ∈ (0, 1) and that |f(p)|≤ 1 for
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3.8 Proof of Theorem 3.2.3 (sketch)

all primes p. For every q ∈ N we define

sF (σ0, q) :=
∏
p|q

(1− F (σ0, p)),

rF (σ0, q) :=
ρg(q)

φ(q)
sF (σ0, q).

For each prime p we put

fp(n) :=


f(p)(1− rF (σ0, p)), if p | n,

−f(p) rF (σ0, p), otherwise.

And as before, we set

fq(n) :=
∏
pν∥q

fp(n)
ν

for any q ∈ N. In addition, let cg ∈ N be the least positive integer such that cgg(x) ∈

Z[x], and let Q0 > cg|g(0)|≥ 1 be such that (3.3.17) holds. Then for each q ∈ N with

P−(q) > Q0 we have Zq(g) ⊆ (Z/qZ)× and ρg(q) = #Zq(g), where Zq(g) denotes the

zero locus of g in Z/qZ. In particular, we have 0 ≤ ρg(q) ≤ φ(q), which implies that

0 ≤ rF (σ0, q) ≤ 1 and that |fq(n)|≤ 1 for all n ∈ N.

Next, we need an analogue of Lemma 3.4.1. Let x be sufficiently large, and set

z := xδ(x)/m > Q0, so and v := log x/log z = m/δ(x). Then we have

∑
Q0<p≤x

f(p) rF (σ0, p) = Af,g(x) +O(1)

by (3.1.1), (3.3.17), and the facts that ρg is bounded on prime powers and that
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3.8 Proof of Theorem 3.2.3 (sketch)

∑
p ψ0(p) <∞. It is easily seen that

f(g(n))− Af,g(x) =
∑

Q0<p≤z

fp(g(n)) +
∑
p>z
p|g(n)

f(p)−
∑

z<p≤x

f(p) rF (σ0, p) +O(1).

Note that

∑
z<p≤x

f(p) rF (σ0, p) = Af,g(x)− Af,g(z) +O(1) ≪ log

ˆ

m

δ(x)
+ 1

˙

.

Since 1 ≤ g(n) ≪ ndg uniformly for all n ∈ N, where dg := deg g ≥ 1, we have

∑
p>z
p|g(n)

f(p) ≪ m

δ(x)
.

It follows that

∑
n≤x

α(n)(f(g(n))−Af,g(x))
m =

∑
n≤x

α(n)

˜ ∑
Q0<p≤z

fp(g(n))

¸m

+O(Eg(x;m)), (3.8.1)

where

Eg(x;m) :=
m−1∑
k=0

ˆ

m

k

˙

2O(m−k)
`

mδ(x)−1
˘m−k

∑
n≤x

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

∑
p≤z

fp(g(n))

ˇ

ˇ

ˇ

ˇ

ˇ

k

.

Now we turn to the estimation of

∑
n≤x

α(n)

˜ ∑
Q0<p≤z

fp(g(n))

¸m

=
∑

Q0<p1,...,pm≤z

∑
n≤x

α(n)fp1···pm(g(n)). (3.8.2)

130



3.8 Proof of Theorem 3.2.3 (sketch)

Let q ∈ N with ω(q) ≤ m, P−(q) > Q0 and P+(q) ≤ z. Then we have

∑
n≤x

α(n)fq(g(n)) =
∑
ab|Rq

fq(a)µ(b)
∑
n≤x

ab|g(n)

α(n) =
∑
ab|Rq

fq(a)µ(b)
∑

c∈Zab(g)

∑
n≤x

n≡c (mod ab)

α(n).

Recall that Zq(g) ⊆ (Z/qZ)×. Thus in place of Lemma 3.3.3, we need to input in our

analysis the information about the distribution of values of α(n) with n restricted to

reduced residue classes. By (3.2.1) and Lemma 3.3.2, the innermost sum is equal to

1

φ(ab)

∑
n≤x

gcd(n,ab)=1

α(n) +O

ˆ

S(x)

φ(ab)(log x)B0

˙

=
1

φ(ab)
λα(ab)x

σ0(log x)β−1

ˆ

1 +O

ˆ

1

(log x)A0

˙˙

+O

ˆ

1

φ(ab)
λαx

σ0(log x)β−1−B0

˙

=
1

φ(ab)
λα sF (σ0, ab)x

σ0(log x)β−1

ˆ

1 +O

ˆ

1

(log x)A0

˙˙

+O

ˆ

1

φ(ab)
λαx

σ0(log x)β−1−B0

˙

=
1

φ(ab)
λαx

σ0(log x)β−1

ˆ

sF (σ0, ab) +O

ˆ

1

(log x)A1

˙˙

,

where A1 := min(A0, B0). It follows that

∑
n≤x

α(n)fq(g(n)) = λα

˜

rG1(σ0, q) +O

˜

rG2(σ0, q)

(log x)A1

¸¸

xσ0(log x)β−1,

where

rG1(σ0, q) :=
∑
ab|Rq

fq(a)µ(b) rF (σ0.ab),

rG2(σ0, q) :=
∑
ab|Rq

ρg(ab)

φ(ab)
|fq(a)|.

It is clear that rG1 and rG2 are both multiplicative in q. Easy calculation shows that

rG1(σ0, p
ν) = f(p)ν rF (σ0, p)

´

1− rF (σ0, p)
¯ ´

(−1)ν rF (σ0, p)
ν−1 + (1− rF (σ0, p))

ν−1
¯
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for any prime power pν . In particular, we have rG1(σ0, p) = 0, | rG1(σ0, p
ν)|≤ 1/4, and

rG1(σ0, p
ν) ≥ 0 when 2 | ν. Moreover, we have that

rG1(σ0, p
2) = f(p)2 rF (σ0, p)

´

1− rF (σ0, p)
¯

= ρg(p)
f(p)2

p
+O

ˆ

F (σ0, p)

p
+

1

p2

˙

,

and that

| rG1(σ0, p
ν)|≤ |f(p)|ν rF (σ0, p) ≤ ρg(p)

f(p)2

φ(p)
= ρg(p)

f(p)2

p
+O

ˆ

1

p2

˙

for all pν with p > Q0 and ν ≥ 2. Thus, one may view ρg as the multiplicative weight

instead in the estimates above. These observations allow us to conclude, by arguing

as in Section 3.5, that the contribution to (3.8.2) from rG1 is

λαCmB(x)
m
2

˜

χm

ˆ

1 +O

ˆ

m log(m/δ(x) + 2)

Bf,g(x)

˙˙

+O

˜

m
3
2

a

Bf,g(x)

¸¸

xσ0(log x)β−1,

while the contribution from rG2 is ≪ λα2
O(m)xσ0(log x)β−1−A0(log log x)m. Now that

we have the estimate for (3.8.2), we can bound Eg(x;m) as before by combining it

with the Cauchy–Schwarz inequality. Hence, we have

Eg(x;m) ≪ λαCmm
3
2

δ(x)
a

Bf,g(x)
xσ0(log x)β−1.

Carrying these estimates back in (3.8.1) completes the proof of Theorem 3.2.3.
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Section 3.9

Proofs of Theorem 3.2.4 and Corollary 3.2.5

(sketch)

Now we outline the proof of Theorem 3.2.4, which borrows the ideas from the proofs of

Theorem 3.2.1 and [15, Theorem 1] with proper modifications. Let 0 < ϵ < min(1, K),

and take z := x1/v and

w :=


x1/log(v+2), if β = 1,

x1/(ϵ log(v+2)), if β ̸= 1,

where we recall that v ≍ m when β = 1 and v = (log log x)m(ϑ0+2) when β ̸= 1

as chosen in Section 3.6. Having made these choices, we have ϵ log(v + 2) → ∞ as

x→ ∞ in the case β ̸= 1. Let

P−
ϵ (x) :=

{
p ≤ x: |f(p)|≤ ϵ

a

B∗(x)
}
,

P+
ϵ (x) :=

{
p ≤ x: ϵ

a

B∗(x) < |f(p)|≤ K
a

B∗(x)
}
,

P∞(x) :=
{
p ≤ x: |f(p)|> K

a

B∗(x)
}
,

and put PK(x) := P−
ϵ (x) ∪ P+

ϵ (x). We consider the strongly additive function

fϵ(n;x) :=
∑
p|n

p∈P−
ϵ (x)

f(p) + ϵβ,1
∑
p|n

p∈P+
ϵ (x)∩(z,x]

f(p) +
∑
p|n

p∈P∞(x)

f(p),
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where we recall that ϵβ,1 takes value 0 if β = 1 and 1 otherwise, and define

Aϵ(x) :=
∑

p∈P−
ϵ (x)

α(p)
f(p)

pσ0
,

Bϵ(x) :=
∑

p∈P−
ϵ (x)

α(p)
f(p)2

pσ0
.

By hypothesis,

B(x)−Bϵ(x) =
∑
p≤x

|f(p)|>ϵ
?

B∗(x)

α(p)
f(p)2

pσ0
= o(B∗(x)),

and so

|Aϵ(x)− A(x)|≤ 1

ϵ
a

B∗(x)

∑
p≤x

|f(p)|>ϵ
?

B∗(x)

α(p)
f(p)2

pσ0
= o

´

ϵ−1
a

B∗(x)
¯

.

We expect that the distribution of fϵ(n;x) is close to being Gaussian with mean A(x)

and variance B(x) when x gets sufficiently large. In what follows, we shall restrict

our attention to the case β ̸= 1, since the opposite case β = 1 is not only similar but

also easier. Looking back at the proof of Lemma 3.4.1, we find, for sufficiently large

x, that

∑
p∈P−

ϵ (x)∩(Q0,x]

f(p)F (σ0, p) = Aϵ(x) +O
´

ϵ
a

B∗(x)
¯

= A(x) +O
´

ϵ
a

B∗(x)
¯

,

so that

fϵ(n;x)− A(x) =
∑

p∈P−
ϵ (x)∩(Q0,z]

fp(n) +
∑
p|n

p∈PK(x)∩(z,w]

f(p) +O
´

ϵ
a

B(x)
¯

, (3.9.1)
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where we have used the hypothesis that f(n) = o(
a

B(x)) for all n ≤ x whose prime

factors p satisfy |f(p)|> K
a

B∗(x). This leads to an analogue of Lemma 3.4.1 in

which the second sum above plays the same role as ω(n; z, w). In analogy to Lemma

3.4.1, we deduce from (3.9.1) that for every fixed m ∈ N, one has

∑
n≤y

α(n)(fϵ(n;x)− A(x))m =
∑
n≤y

α(n)

¨

˝

∑
p∈P−

ϵ (x)∩(Q0,z]

fp(n)

˛

‚

m

+O pEϵ(y, z, w;m)q ,

(3.9.2)

uniformly for all sufficiently large x and any y ≥ 1, where

Eϵ(y, z, w;m) :=
∑

a+b+c=m
0≤a<m
b,c≥0

ˆ

m

a, b, c

˙

´

ϵ
a

B(x)
¯c ∑

n≤y

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∑
p∈P−

ϵ (x)∩(Q0,z]

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a

ωf (n; z, w)
b,

and

ωf (n; z, w) :=
∑
p|n

p∈PK(x)∩(z,w]

|f(p)|.

To estimate the right-hand side of (3.9.2), one only needs to recycle the arguments

used in the proof of Theorem 3.2.1 and make slight modifications. For instance, the

estimation of ∑
n≤y

α(n)

¨

˝

∑
p∈P−

ϵ (x)∩(Q0,z]

fp(n)

˛

‚

m

is essentially the same as that of (3.4.1) given in Sections 3.4 and 3.5, except that we

use the inequality |f(p)|≤ ϵ
a

B∗(x) for p ∈ P−
ϵ (x) in place of the bound f(p) = O(1)

throughout the argument. This way, we see that

G(σ0, p
2) = α(p)

f(p)2

pσ0
+O

ˆ

ϵ2B∗(z)

ˆ

ψ0(p) +
α(p)2

p2σ0

˙˙
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and that

|G(σ0, pν)|≤
´

ϵ
a

B∗(z)
¯ν−2

ˆ

α(p)
f(p)2

pσ0
+O

ˆ

ϵ2B∗(z)

ˆ

ψ0(p) +
α(p)2

p2σ0

˙˙˙

for all p ∈ P−
ϵ (x) ∩ (Q0, z] and ν ≥ 2. Using these two estimates in place of (3.5.1)

and (3.5.2) and following the argument in Section 3.5, we obtain

∑
n≤y

α(n)

¨

˝

∑
p∈P−

ϵ (x)∩(Q0,z]

fp(n)

˛

‚

m

= λα

ˆ

µm +O

ˆ

ϵ log v

log log log x

˙˙

B(x)
m
2 yσ0(log y)β−1

= λα(µm +O(ϵ))B(x)
m
2 yσ0(log y)β−1 (3.9.3)

uniformly for y ∈ [xη0 , x], where η0 ∈ (0, 1] is any given constant. On the other hand,

the estimation of Eϵ(y, z, w;m) reduces to that of

∑
n≤y

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∑
p∈P−

ϵ (x)∩(Q0,z]

fp(n)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a

ωf (n; z, w)
b.

The argument is essentially the same as that of (3.6.2) in the case β ̸= 1 given

in Section 3.6. The only difference is that we now make use of the estimates that

f(p) ≤ K
a

B∗(x) for all p ∈ PK(x) and that

∑
p∈PK(x)∩(z,w]

α(p)
|f(p)|ν

pσ0
≪ ϵB(x)

ν
2

for all ν ≥ 1, in place of the estimates that f(p) = O(1) and that

∑
z<p≤w

α(p)
|f(p)|ν

pσ0
= O(log v) = O(log log log x),
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respectively. The second estimate can be easily seen by considering p ∈ P−
ϵ (x) and

p ∈ P+
ϵ (x) separately. Indeed, one derives it by adding up the inequalities

∑
p∈P−

ϵ (x)∩(z,w]

α(p)
|f(p)|ν

pσ0
≪ (ϵB∗(x))

ν
2

∑
p∈P−

ϵ (x)∩(z,x]

α(p)

pσ0
≪ (ϵB∗(x))

ν
2 log v ≪ ϵB(x)

ν
2

and

∑
p∈P+

ϵ (x)∩(z,w]

α(p)
|f(p)|ν

pσ0
≪ (B∗(x))

ν−1
2

∑
p∈P+

ϵ (x)∩(z,x]

α(p)
|f(p)|
pσ0

≪ ϵ−1(B∗(x))
ν
2
−1

∑
p≤x

|f(p)|>ϵ
?

B∗(x)

α(p)
f(p)2

pσ0

= o
`

ϵ−1B∗(x)
ν
2

˘

≪ ϵB(x)
ν
2 .

One shows in this way that Eϵ(y, z, w;m) = O(ϵλαB(x)
m
2 yσ0(log y)β−1). Inserting

this estimate and (3.9.3) in (3.9.2) and taking y = x yields

S(x)−1
∑
n≤x

α(n) pfϵ(n;x)− A(x)qm = (µm +O(ϵ))B(x)
m
2

for every fixed m ∈ N and all sufficiently large x, where the implied constant in the

error term is independent of ϵ.

To complete the proof of Theorem 3.2.4 for the case β ̸= 1, it is sufficient to show

S(x)−1
∑
n≤x

α(n)|f(n)− fϵ(n;x)|m= O
`

ϵB∗(x)
m
2

˘

(3.9.4)

for every given ϵ ∈ (0, 1) and m ∈ N, where the implicit constant in the error term

is independent of ϵ. Since the case where m is odd follows from the case where m is

even by Cauchy–Schwarz, we need only to consider the latter case. The proof of this

case is largely the same as that of [15, Lemma 2], except for the slight complication
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in the possible case β ∈ (0, 1). When m is even, we have

S(x)−1
∑
n≤x

α(n)|f(n)− fϵ(n;x)|m= S(x)−1
∑
n≤x

α(n)
∑

p1,...,pm|n
p1,...,pm∈P+

ϵ (x)∩[2,z]

f(p1) · · · f(pm),

which, after grouping terms according to the distinct primes among p1, ..., pm, becomes

S(x)−1
∑
s≤m

∑
p1<...<ps≤z

p1,...,ps∈P+
ϵ (x)

∑
k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙

f(p1)
k1 · · · f(ps)ks

∑
n≤x

p1···ps|n

α(n). (3.9.5)

By (3.3.4) we have

∑
n≤x

p1···ps|n

α(n) =
∑
q≤x

Rq=p1···ps

α(q)
∑

n′≤x/q
gcd(n′,q)=1

α(n′) ≪ λαx
σ0

∑
q≤x

Rq=p1···ps

α(q)

qσ0

ˆ

log
3x

q

˙β−1

.

Appealing to (3.3.3) we derive

∑
q≤x

Rq=p1···ps

α(q)

qσ0

ˆ

log
3x

q

˙β−1

≪ (log x)β−1
∑
q≤

?
x

Rq=p1···ps

α(q)

qσ0
+

∑
?
x<q≤x

Rq=p1···ps

α(q)

qσ0

ˆ

log
3x

q

˙β−1

≪ (log x)β−1

s∏
i=1

∞∑
ν=1

α(pνi )

pσ0ν
i

+
(log x)s+β−2

p
?
xq

1−ϱ0

= (log x)β−1

s∏
i=1

ˆ

α(pi)

pσ0
i

+ ψ0(pi)

˙

+
(log x)s+β−2

p
?
xq

1−ϱ0
.

These estimates together with (3.3.4) imply that (3.9.5) is ≪ Σ1 + Σ2, where

Σ1 :=
∑
s≤m

∑
p1<...<ps≤z

p1,...,ps∈P+
ϵ (x)

∑
k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙

ˇ

ˇf(p1)
k1 · · · f(ps)ks

ˇ

ˇ

s∏
i=1

ˆ

α(pi)

pσ0
i

+ ψ0(pi)

˙

,

Σ2 :=
(log x)m−1

p
?
xq

1−ϱ0

∑
s≤m

∑
p1<...<ps≤z

p1,...,ps∈P+
ϵ (x)

∑
k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙

ˇ

ˇf(p1)
k1 · · · f(ps)ks

ˇ

ˇ .
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Since f(p) ≤ K
a

B∗(x) for all p ∈ P+
ϵ (x), we have

Σ2 ≪
(log x)m−1

p
?
xq

1−ϱ0
π(z)mB∗(x)

m
2 = o

`

B∗(x)
m
2

˘

≪ ϵB∗(x)
m
2 .

To bound Σ1, we observe

ˇ

ˇf(p1)
k1 · · · f(ps)ks

ˇ

ˇ ≪ B∗(x)
m−s

2 |f(p1) · · · f(ps)|.

Thus, we have

Σ1 ≤
∑
s≤m

B∗(x)
m−s

2
1

s!

¨

˚

˚

˝

∑
p≤z

p∈P+
ϵ (x)

ˆ

α(p)
|f(p)|
pσ0

+ ψ0(p)

˙

˛

‹

‹

‚

s ∑
k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙

=
∑
s≤m

B∗(x)
m−s

2
1

s!

´

o
´

ϵ−1
a

B∗(x)
¯¯s ∑

k1+···+ks=m
k1,...,ks∈N

ˆ

m

k1, ..., ks

˙

≪ ϵB∗(x)
m
2 .

Combining these estimates completes the proof of (3.9.4) in the case β ̸= 1.

As we mentioned in Section 3.2, Corollary 3.2.5 is an immediate consequence of

Theorem 3.2.4 when f is strongly additive. The transition to the general additive

case is then accomplished by applying the following analogue of [54, Theorem B]. And

this is the only place where we need to make use of characteristic functions.

Lemma 3.9.1. Let α:N → R≥0 be a multiplicative function, and suppose that there

exist absolute constants A0, β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈ [0, 1) and r ∈ (0, 1), such that

α(n) satisfies the conditions (i)–(iv). Let f :N → R be an additive function, and

denote by f̃ the strongly additive contraction of f . Suppose that B(x) → ∞ as

x → ∞. Then XN(n) := (f(n) − A(N))/
a

B(N) possesses a limiting distribution

function with respect to the natural probability measure induced by α if and only if

rXN(n) := (f̃(n) − A(N))/
a

B(N) does, in which case they share the same limiting
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distribution function.

Proof. As before, we shall assume A0 ∈ (0, 1). For each N ∈ N, the distribution

functions of XN(n) and rXN(n) are given by

ΦN(V ) = S(N)−1
∑
n≤N

XN≤V

α(n),

rΦN(V ) = S(N)−1
∑
n≤N
rXN≤V

α(n),

respectively. We have to show that ΦN(V ) converges weakly to a distribution function

as N → ∞ if and only if rΦN(V ) does, in which case they converge weakly to the same

distribution function. Note that the characteristic functions of XN(n) and rXN(n) are

φN(t) = S(N)−1
∑
n≤N

α(n)eitXN (n),

rφN(t) = S(N)−1
∑
n≤N

α(n)eit
rXN (n),

respectively. By Lévy’s continuity theorem [56, Theorem III.2.6], it suffices to show

lim
N→∞

pφN(t)− rφN(t)q = 0 (3.9.6)

for any given t ∈ R. To prove this, let us fix t ∈ R and let ϵ ∈ (0, 1/(2|t|+1)) be

arbitrary. Denote by Jϵ(N) the greatest integer not exceeding
?
N such that the

inequality |f(n)|≤ ϵ
a

B(N) holds for all 1 ≤ n ≤ Jϵ(N). Since B(N) ↗ ∞ as
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N → ∞, we have Jϵ(N) ↗ ∞ as N → ∞. By (3.3.4) we have

|φN(t)− rφN(t)| ≤ S(N)−1
∑
n≤N

α(n)

ˇ

ˇ

ˇ

ˇ

ˇ

exp

˜

it
f(n)− f̃(n)

a

B(N)

¸

− 1

ˇ

ˇ

ˇ

ˇ

ˇ

= S(N)−1
∑
a≤N

a squareful

α(a)

ˇ

ˇ

ˇ

ˇ

ˇ

exp

˜

it
f(a)− f(Ra)

a

B(N)

¸

− 1

ˇ

ˇ

ˇ

ˇ

ˇ

∑
b≤N/a

b squarefree
gcd(b,a)=1

α(b)

≪ S(N)−1λαN
σ0

∑
a≤N

a squareful

α(a)

aσ0

ˆ

log
3N

a

˙β−1
ˇ

ˇ

ˇ

ˇ

ˇ

exp

˜

it
f(a)− f(Ra)

a

B(N)

¸

− 1

ˇ

ˇ

ˇ

ˇ

ˇ

.

From (3.1.1) and (3.1.3) it follows that

∞∑
a=1

a squareful

α(a)

as
=

∏
p

˜

1 +
∑
ν≥2

α(pν)

pνs

¸

is absolutely convergent for s ∈ C with ℜ(s) > max(ϱ0, r) + σ0 − 1. Thus

c(δ) :=
∞∑
a=1

a squareful

α(a)

aσ0−δ
=

∏
p

˜

1 +
∑
ν≥2

α(pν)

pν(σ0−δ)

¸

<∞

for any δ < 1−max(ϱ0, r). Since

ˇ

ˇ

ˇ

ˇ

ˇ

it
f(a)− f(Ra)

a

B(N)

ˇ

ˇ

ˇ

ˇ

ˇ

≤ 2ϵ|t|< 1

for all a ≤ Jϵ(N), this implies

∑
a≤Jϵ(N)
a squareful

α(a)

aσ0

ˆ

log
3N

a

˙β−1
ˇ

ˇ

ˇ

ˇ

ˇ

exp

˜

it
f(a)− f(Ra)

a

B(N)

¸

− 1

ˇ

ˇ

ˇ

ˇ

ˇ

≪ ϵ|t|(logN)β−1.
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Now fix 0 < δ < 1−max(ϱ0, r). By partial summation we have

∑
a≤x

a squareful

α(a)

aσ0
= c(0)−

∫ ∞

x

1

tδ
d

¨

˚

˝

∑
a≤t

a squareful

α(a)

aσ0−δ

˛

‹

‚

= c(0) + o
`

x−δ
˘

when x is sufficiently large. It follows that

∑
Jϵ(N)<a≤N
a squareful

α(a)

aσ0

ˆ

log
3N

a

˙β−1
ˇ

ˇ

ˇ

ˇ

ˇ

exp

˜

it
f(a)− f(Ra)

a

B(N)

¸

− 1

ˇ

ˇ

ˇ

ˇ

ˇ

≤ 2
∑

Jϵ(N)<a≤N
a squareful

α(a)

aσ0

ˆ

log
3N

a

˙β−1

= 2

∫ N

Jϵ(N)

ˆ

log
3N

t

˙β−1

d

¨

˚

˝

∑
a≤t

a squareful

α(a)

aσ0

˛

‹

‚

= o
`

N−δ
˘

+ o
`

(logN)β−1Jϵ(N)−δ
˘

+ o

˜∫ N

Jϵ(N)

t−1−δ

ˆ

log
3N

t

˙β−2

dt

¸

for sufficiently large N . By a change of variable we see that

∫ N

Jϵ(N)

t−1−δ

ˆ

log
3N

t

˙β−2

dt = (3N)−δ

∫ log(3N/Jϵ(N))

log 3

eδttβ−2 dt

≪ (3N)−δ

ˆ

3N

Jϵ(N)

˙δ ˆ

log
3N

Jϵ(N)

˙β−2

≪ (logN)β−2Jϵ(N)−δ.

Hence, we have

∑
Jϵ(N)<a≤N
a squareful

α(a)

aσ0

ˆ

log
3N

a

˙β−1
ˇ

ˇ

ˇ

ˇ

ˇ

exp

˜

it
f(a)− f(Ra)

a

B(N)

¸

− 1

ˇ

ˇ

ˇ

ˇ

ˇ

= o
`

(logN)β−1Jϵ(N)−δ
˘

.
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for sufficiently large N . Gathering the estimates above, we obtain

φN(t)− rφN(t) ≪ ϵ|t|+o
`

Jϵ(N)−δ
˘

for sufficiently large N , where the implicit constants are independent of t, ϵ and N .

From this estimate we infer that

lim sup
N→∞

|φN(t)− rφN(t)| = O(ϵ|t|),

where the implicit constant is independent of t and ϵ. Since ϵ ∈ (0, 1/(2|t|+1)) is

arbitrary, we obtain (3.9.6) as desired.

Section 3.10

An Application to the Ramanujan τ-function

Let τ(n) be the Ramanujan τ -function. The goal of this section is to prove Theorem

1.2.1. In fact, we shall show that this result follows from Corollary 3.2.5 in combi-

nation with Lemma 3.9.1 and [19, Lemma 7] without difficulty. In comparison to

Elliott’s probabilistic approach, our approach enables us to get around some of the

complications resulting from the analysis of τ(n).

To illustrate this, let α(n) = τ(n)2/n11, and define the additive function f(n) by

f(pν) = log
a

α(pν) if α(pν) ̸= 0 and f(pν) = 0 otherwise, where pν is any prime

power. It is easy to verify, using the facts about τ(n) discussed in Section 3.1, that

α(n) satisfies conditions (i)–(iv) with any fixed A0 > 0, β = 1, σ0 = 1, ϑ0 = 0, and

any fixed ϱ0 ∈ (0, 1) and r ∈ (1/2, 1). Moreover, we have α(n) ≤ d(n)2 by Deligne’s

bound. To prove (1.2.7), it suffices to demonstrate that the limiting distribution of

(f(n) − A(x))/
a

B(x) with respect to the natural probability measure induced by
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α is the standard Gaussian distribution, where it is clear that A(x) = Aτ (x) and

B(x) = Bτ (x).

Let us consider the strongly additive function f0(n) defined by f0(p) = log
a

α(p)

if p /∈ E0 and f0(p) = 0 otherwise, where E0 := {p > 2:α(p) ≤ exp(−2 3
?
log log p)}.

Denote by A0(x) and B0(x) the expected mean and variance of f0(n) weighted by

α(n), respectively. It can be shown [19, Lemma 7] that B(x) ≍ log log x. Since the

inequality t|log t|≤
?
t holds for all t ∈ [0, 1], we have

∑
p≤x
p∈E0

α(p)
|f(p)|
p

≤
∑
p≤x
p∈E0

a

α(p)

p
≤

∑
p>2

1

p
exp

´

− 3
a

log log p
¯

<∞.

It follows that A0(x) = A(x) + O(1). A similar argument shows that B0(x) =

B(x) + O(1) ≍ log log x. Thus, f0(p) = O(B0(p)
1/3) for all p, which shows that

f0(n) satisfies the hypotheses in Corollary 3.2.5. Hence, the limiting distribution of

(f0(n)−A(x))/
a

B(x) with respect to the natural probability measure induced by α

is the standard Gaussian distribution.

To complete our argument, let rf be the strongly additive contraction of f . Then

f0(n) ≥ rf(n) for all n ∈ N. Moreover, Deligne’s bound and the fact that τ(n) ∈ Z

for all n ∈ N imply that −(11 log p)/2 ≤ f(p) ≤ log 2 whenever α(p) ̸= 0. Since

∑
ν≥1

α(pν)

pν
≤ α(p)

p
+
∑
ν≥2

(ν + 1)2

pν
=
α(p)

p
+O

ˆ

1

p2

˙

,
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3.11 The Number of Prime Factors of φ(n)

we have

S(x)−1
∑
n≤x

α(n)
´

f0(n)− rf(n)
¯

= S(x)−1
∑
p≤x
p∈E0

|f(p)|
∑
n≤x
p|n

α(n)

= S(x)−1
∑
p≤x
p∈E0

|f(p)|
∑
ν≥1

α(pν)
∑

n′≤x/pν

p∤n′

α(n′)

≪ S(x)−1λαx
∑
p≤x
p∈E0

|f(p)|
∑
ν≥1

α(pν)

pν

≪
∑
p≤x
p∈E0

α(p)
|f(p)|
p

+O

˜∑
p>2

log p

p2

¸

≪ 1.

This estimate is sufficient for us to conclude that the limiting distribution of ( rf(n)−

A(x))/
a

B(x) with respect to the natural probability measure induced by α is also

the standard Gaussian distribution. By Lemma 3.9.1, the same is true for (f(n) −

A(x))/
a

B(x).

Remark 3.10.1. The above argument can be easily modified to yield similar results

for the Fourier coefficients of elliptic holomorphic newforms of weight at least 2. The

reader is referred to [20] for examples of such results.

Section 3.11

The Number of Prime Factors of φ(n)

Recall that for each n ∈ N, Ω(n) denotes the number of prime factors of n, counting

multiplicity, and that Euler’s totient function φ(n) may be defined explicitly by

φ(n) := n
∏
p|n

ˆ

1− 1

p

˙

.
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We are interested in the distribution of Ω(φ(n)) weighted by certain multiplicative

functions. And the goal of this chapter is to prove Theorem 1.2.2. As promised, we

shall actually prove the following more general result.

Theorem 3.11.1. Let α:N → R≥0 be a multiplicative function, and suppose that

there exist absolute constants A0, β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈ [0, 1) and r ∈ (0, 1), such

that α(n) satisfies the conditions (i)–(iv). Furthermore, suppose that α(p) ∼ βpσ0−1

for all but a subset E of primes p, where #(E ∩ [2, x]) = o(x(log log x)2−ϑ0/(log x)3)

as x→ ∞. Then

lim
x→∞

S(x)−1
∑
n≤x

Ω(φ(n))≤β(log log x)2/2+V
?

β(log log x)3/3

α(n) = Φ(V ) (3.11.1)

for every V ∈ R.

Proof. Let us first determine the weighted mean A(x) and variance B(x) of the ad-

ditive function f(n) = Ω(φ(n)). The unweighted mean and variance of Ω(φ(n)) are

provided by Lemmas 2.3 and 2.4 from [25]:

∑
p≤x

Ω(p− 1)

p
=

1

2
(log log x)2 +O(log log x), (3.11.2)

∑
p≤x

Ω(p− 1)2

p
=

1

3
(log log x)3 +O

`

(log log x)2
˘

. (3.11.3)
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Since α(p) ∼ βpσ0−1 for all p /∈ E, it follows from (3.1.4) and (3.11.2) that

A(x) =
∑
p≤x

α(p)
Ω(p− 1)

pσ0

=
∑
p≤x
p/∈E

α(p)
Ω(p− 1)

pσ0
+O

¨

˚

˚

˝

∑
p≤x
p∈E

log p

p
(log log p)ϑ0

˛

‹

‹

‚

= β
∑
p≤x

Ω(p− 1)

p
+ o

˜∑
p≤x

Ω(p− 1)

p

¸

+O

¨

˚

˚

˝

∑
p≤x
p∈E

log p

p
(log log p)ϑ0

˛

‹

‹

‚

= (1 + o(1))
β

2
(log log x)2 +O

¨

˚

˚

˝

∑
2<p≤x
p∈E

log p

p
(log log p)ϑ0

˛

‹

‹

‚

.

Put E(x) := #(E∩[2, x]). By hypothesis, we have E(x) = o(x(log log x)2−ϑ0/(log x)3)

as x→ ∞. It is easily seen by partial summation that

∑
2<p≤x
p∈E

log p

p
(log log(p+ 1))ϑ0 ≪ E(x)

log x

x
(log log x)ϑ0 +

∫ x

3−
E(t)

log t

t2
(log log t)ϑ0 dt

= O(1).

Hence, we obtain

A(x) = (1 + o(1))
β

2
(log log x)2. (3.11.4)

Similarly, since

∑
2<p≤x
p∈E

(log p)2

p
(log log(p+ 1))ϑ0 ≪ E(x)

(log x)2

x
(log log x)ϑ0 +

∫ x

3−
E(t)

(log t)2

t2
(log log t)ϑ0 dt

= o
`

(log log x)3
˘

,
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we have by (3.11.3) that

B(x) =
∑
p≤x

α(p)
Ω(p− 1)2

pσ0
= (1 + o(1))

β

3
(log log x)3. (3.11.5)

Next, we estimate the tail of the weighted variance of Ω(φ(n)) over the primes p

for which Ω(p− 1) are large. It is known [26, Corollary 1] that

#{n ≤ x: Ω(n) ≥ T} ≪ 2−TT 4x log x (3.11.6)

uniformly for all x ≥ 3 and T ≥ 1. We have by (3.1.4)

∑
p≤x

Ω(p−1)>T

α(p)
Ω(p− 1)2

pσ0
≪ (log log x)ϑ0

∑
n≤x

Ω(n)>T

Ω(n)2

n

uniformly for all x ≥ 3 and T ≥ 1. The sum on the right-hand side can be easily

shown to be O(2−TT 4(log x)4) by using (3.11.6) and partial summation. The details

were worked out in the proof of [25, Theorem 3.1]. It follows that

∑
p≤x

Ω(p−1)>T

α(p)
Ω(p− 1)2

pσ0
≪ 2−TT 4(log x)4(log log x)ϑ0 .

Taking T = 8 log log x, we have

∑
p≤x

Ω(p−1)>8 log log x

α(p)
Ω(p− 1)2

pσ0
≪ (log x)−3/2 (3.11.7)

for all x ≥ 3.

Although we are tempted to apply Corollary 3.2.5 directly to Ω(φ(n)), it is not

legitimate to do so, because the value of Ω(p − 1) can be as large as log p. To

circumvent this problem, we consider instead the strongly additive function f0(n)
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3.11 The Number of Prime Factors of φ(n)

defined by f0(p) = Ω(p−1) if Ω(p−1) ≤ 9 log log 2p and f0(p) = 0 otherwise. Denote

by A0(x) and B0(x) the expected mean and variance of f0(n) weighted by α(n),

respectively. In order to show that A0(x) and B0(x) are close to A(x) and B(x), we

need only an upper bound of the correct magnitude for the unweighted variance of

Ω(p− 1). By [25, Lemmas 2.1, 2.2] we have

∑
p≤x

Ω(p− 1) =
x log log x

log x
+O

ˆ

x

log x

˙

,

∑
p≤x

Ω(p− 1)2 =
x(log log x)2

log x
+O

ˆ

x log log x

log x

˙

.

Now simple calculation shows

1

π(x)

∑
p≤x

pΩ(p− 1)− log log xq
2 = O(log log x).

Hence, we have

1

π(x)

∑
p≤x

pΩ(p− 1)− log log 2pq
2

≪ 1

π(x)

∑
p≤

?
x

(log p)2 +
1

π(x)

∑
?
x<p≤x

pΩ(p− 1)− log log x+O(1)q2

≪ log log x,

which is precisely what we need. (Halberstam [33, Theorem 3] showed that

1

π(x)

∑
p≤x

pω(p− 1)− log log xq
2 = (1 + o(1)) log log x.

His method may be adapted to yield the same asymptotic formula with Ω(p − 1)

in place of ω(p − 1), but the upper bound that we just derived is sufficient for our
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purposes.) From this estimate we deduce at once

∑
p≤x

Ω(p−1)>9 log log 2p

Ω(p− 1)2 ≪ x log log x

log x
.

By partial summation we obtain

∑
p≤x

Ω(p−1)>9 log log 2p

Ω(p− 1)2

p
≪ (log log x)2, (3.11.8)

∑
p≤x

Ω(p−1)>9 log log 2p

Ω(p− 1)2

p log log 2p
≪ log log x, (3.11.9)

∑
p≤x

Ω(p−1)>9 log log 2p

Ω(p− 1)2

log log 2p
≪ x

log x
. (3.11.10)

Thus, it follows by (3.11.8) that

B(x)−B0(x) =
∑
p≤x

Ω(p−1)>9 log log 2p

α(p)
Ω(p− 1)2

pσ0

≪
∑
p≤x

Ω(p−1)>9 log log 2p

Ω(p− 1)2

p
+ o

`

(log log x)3
˘

= o
`

(log log x)3
˘

,

where the error o((log log x)3) on the second line arises from the contribution from
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the primes in E. Analogously, we have by (3.11.9) that

A(x)− A0(x) =
∑
p≤x

Ω(p−1)>9 log log 2p

α(p)
Ω(p− 1)

pσ0

≪
∑
p≤x

Ω(p−1)>9 log log 2p

Ω(p− 1)2

p log log 2p
+O(1)

≪ log log x. (3.11.11)

Applying Corollary 3.2.5 to f0(n), we hence conclude that the distribution of f0(n)

is approximately Gaussian with mean β(log log x)2/2 and variance β(log log x)3/3.

According to Lemma 3.9.1, it suffices to show that the distribution of the ad-

ditive contraction f̃(n) of f(n) = Ω(φ(n)) is approximately Gaussian with mean

β(log log x)2/2 and variance β(log log x)3/3. To this end, we show that f̃(n) and

f0(n) are close on average. It is clear that

f̃(n)− f0(n) =
∑
p|n

Ω(p−1)>9 log log 2p

Ω(p− 1). (3.11.12)

Note that

S(x)−1
∑
n≤x

α(n)
∑
p|n

Ω(p−1)>9 log log 2p

Ω(p− 1)

= S(x)−1
∑
p≤x

Ω(p−1)>9 log log 2p

Ω(p− 1)
∑
n≤x
p|n

α(n)

= S(x)−1
∑

pν≤x,ν≥1
Ω(p−1)>9 log log 2p

Ω(p− 1)α(pν)
∑

n′≤x/pν

p∤n

α(n′)

≪ (log x)1−β
∑

pν≤x,ν≥1
Ω(p−1)>9 log log 2p

Ω(p− 1)
α(pν)

pσ0ν

ˆ

log
3x

pν

˙β−1

.

151



3.11 The Number of Prime Factors of φ(n)

To proceed, we split the last sum above into sums over the ranges pν ≤
?
x,

?
x <

pν ≤ x with p ≤ (
?
x)1−ϱ0 , and

?
x < pν ≤ x with p > (

?
x)1−ϱ0 . The first sum is

∑
pν≤

?
x,ν≥1

Ω(p−1)>9 log log 2p

Ω(p− 1)
α(pν)

pσ0ν

ˆ

log
3x

pν

˙β−1

≪ (log x)β−1
∑
p≤

?
x

Ω(p−1)>9 log log 2p

Ω(p− 1)
∑
ν≥1

α(pν)

pσ0ν

= (log x)β−1
∑
p≤

?
x

Ω(p−1)>9 log log 2p

α(p)
Ω(p− 1)

pσ0

+ (log x)β−1
∑
p

log p
∑
ν≥2

α(pν)

pσ0ν

≪ (log x)β−1 log log x,

by (3.1.3) and (3.11.11). The second sum is

∑
?
x<pν≤x,ν≥1
p≤(

?
x)1−ϱ0

Ω(p−1)>9 log log 2p

Ω(p− 1)
α(pν)

pσ0ν

ˆ

log
3x

pν

˙β−1

=
∑

p≤(
?
x)1−ϱ0

Ω(p−1)>9 log log 2p

Ω(p− 1)
∑

logp
?
x<ν≤logp x

α(pν)

pσ0ν

ˆ

log
3x

pν

˙β−1

≪ (log x)β−1

(
?
x)1−ϱ0

∑
p≤(

?
x)1−ϱ0

Ω(p−1)>9 log log 2p

Ω(p− 1)

≪ (log x)β−1

(
?
x)1−ϱ0

∑
p≤(

?
x)1−ϱ0

Ω(p−1)>9 log log 2p

Ω(p− 1)2

log log 2p

≪ (log x)β−2,

by (3.3.3) and (3.11.10). Finally, by (3.1.4) and (3.11.7) (with α(p) = pσ0−1 for all
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p), we see that the third sum is

∑
?
x<pν≤x,ν≥1
p>(

?
x)1−ϱ0

Ω(p−1)>9 log log 2p

Ω(p− 1)
α(pν)

pσ0ν

ˆ

log
3x

pν

˙β−1

≪ (log x)max(β−1,0)(log log x)ϑ0

∑
p≤x

Ω(p−1)>8 log log x

Ω(p− 1)

p

≪ (log x)max(β−1,0)(log log x)ϑ0−1
∑
p≤x

Ω(p−1)>8 log log x

Ω(p− 1)2

p

≪ (log log x)ϑ0−1(log x)max(β−1,0)−3/2

≪ (log x)β−1.

Combining these estimates, we obtain

S(x)−1
∑
n≤x

α(n)
∑
p|n

Ω(p−1)>9 log log 2p

Ω(p− 1) ≪ log log x,

which, together with (3.11.12), implies that

S(x)−1
∑
n≤x

α(n)
´

f̃(n)− f0(n)
¯

≪ log log x = o
`

(log log x)3/2
˘

.

This allows us to conclude that just like f0(n), the distribution of f̃(n) is also approx-

imately Gaussian with mean β(log log x)2/2 and variance β(log log x)3/3. And so the

same can be said about f(n).

Remark 3.11.1. It is possible to adapt the proof of [25, Theorem 3.2] to obtain an

analogue of Corollary 3.11.1 for ω(φ(n)). This essentially requires a weighted version

of the Turán–Kubilius inequality. It is not hard to show, by modifying the proof of

the classical Turán–Kubilius inequality, that if f :N → C is an additive function, and
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if α:N → R≥0 is a multiplicative function satisfying the conditions (i)–(iv), then

S(x)−1
∑
n≤x

α(n)
ˇ

ˇf(n)− A#(x)
ˇ

ˇ

2 ≪ B#(x) (3.11.13)

for all x ≥ 1, where

A#(x) :=
∑
pν≤x

α(pν) sF (σ0, p)
f(pν)

pσ0ν
,

B#(x) :=
∑
pν≤x

α(pν)
|f(pν)|2

pσ0ν

ˆ

1− log pν

log 3x

˙β−1

.

In the case β ≥ 1, the factor (1− log pν/log 3x)β−1 in the expression of B#(x) above

may be removed. But in the case β ∈ (0, 1), this factor is ≍ (log x)1−β when pν

is close to x, so some care needs to be taken in practice. To ensure satisfactory

estimates, one may suppose further in this case that α(pν)/pσ0ν decays suitably fast

as pν grows, so that the tails of A#(x) and B#(x) only contribute negligible amounts.

For instance, one may assume that α(n) satisfies the same conditions as in Theorem

3.2.2, in addition to the hypothesis that α(p) ∼ βpσ0−1 for all but a subset E of

primes p, where #(E∩ [2, x]) = o(x(log log x)2−ϑ0/(log x)3) as x→ ∞. Then one may

show, by arguing as in the proof of [25, Theorem 3.2] and employ Corollary 1.2.2 and

(3.11.13), that (1.2.10) also holds for every V ∈ R with ω(φ(n)) in place of Ω(φ(n)).

The interested reader can fill in the required details without much difficulty.

Section 3.12

Concluding Remarks

Although in the present work we only focused on the subclass M∗ of multiplicative

functions, it is also of interest to consider weight functions α(n) which satisfy certain

154



3.12 Concluding Remarks

Landau–Selberg–Delange type conditions. Given more information about α(n) and

its associated Dirichlet series F (s) =
∑∞

n=1 α(n)n
−s, better results are obtainable in

some circumstances. Below we give a brief description of the method in the special

case where F (s) is close to an integral power of the Riemann zeta-function ζ(s).

For a complex number s ∈ C, we write σ = ℜ(s) and t = ℑ(s). Let α:N → R≥0

be a multiplicative function whose Dirichlet series F (s) =
∑∞

n=1 α(n)n
−s is absolutely

convergent for s ∈ C with σ > σ0, where σ0 > 0 is an absolute constant. Suppose

that there exist absolute constants β ∈ N, 0 < θ0 < σ0, B > 0, and 0 < δ < 1, such

that Hβ(s) := F (s)ζ(s − σ0 + 1)−β has an analytic continuation in the half plane

σ ≥ θ0 with

lim
s→σ0

F (s)(s− σ0)
β > 0,

and such that |Hβ(s)|≤ B(1 + |t|)1−δ for all s ∈ C with σ ≥ θ0. It is clear that

F (s) has (absolute) abscissa of convergence σ0. Adapting the argument used in the

proof of [38, Lemma 2.1] or [56, Theorem II.5.2], one can show that there exists some

constant ϵ0 > 0 such that

S(x) =
1

σ0
Ress=σ0

ˆ

F (s)xs

s− σ0 + 1

˙

− xσ0(log x)β−1

β−1∑
k=1

k−1∑
j=0

cj,k
µj(β)

(log x)k
+O

`

Bxθ
˘

(3.12.1)

uniformly for all x ≥ 3 and θ ∈ (σ0 − ϵ0, σ0), where

µk(β) :=
1

k!
· d

k

dsk

ˆ

F (s)(s− σ0)
β

s− σ0 + 1

˙
ˇ

ˇ

ˇ

ˇ

s=σ0

,

cj,k :=
(−1)k−j(σ0 − 1)

(β − k − 1)!σk−j+1
0

,

and the implicit constant in the error term depends at most on β, σ0, θ0, δ, ϵ0. Notably,

one gains an asymptotic for S(x) with a power-saving error term uniformly in B, in

contrast to what is provided by (3.3.4). Furthermore, suppose that there exists an
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absolute constant λ > 0 such that α(pν) = O
`

pλpσ0−1q
ν˘

for all prime powers pν . Let

F (s, a) :=
∏
p|a

¨

˝1−

˜

∞∑
ν=0

α(pν)p−νs

¸−1
˛

‚

for s ∈ C with σ ≥ θ0 and squarefree a ∈ N. When s = σ0, this definition coincides

with the one introduced in Lemma 3.3.3. As in the proof of Lemma 3.3.3, it is not

hard to show that

F (s, p) =
α(p)

ps
+O

ˆ

α(p)2

p2σ
+

1

p2(σ−σ0+1)

˙

(3.12.2)

for all s ∈ C with σ ≥ θ0 and all sufficiently large p. In addition, we observe that

∞∑
n=1
a|n

α(n)

ns
=

¨

˝

∏
p∤a

∞∑
ν=0

α(pν)p−νs

˛

‚

¨

˝

∏
p|a

∞∑
ν=1

α(pν)p−νs

˛

‚

= F (s)

¨

˝

∏
p|a

∞∑
ν=0

α(pν)p−νs

˛

‚

−1 ¨

˝

∏
p|a

∞∑
ν=1

α(pν)p−νs

˛

‚= F (s)F (s, a)

for s ∈ C with σ > σ0 and squarefree a ∈ N. Applying (3.12.1) to the above

Dirichlet series expansion of F (s)F (s, a) and using (3.12.2) to obtain upper bounds

for Hβ(s)F (s, a) uniformly in σ ≥ θ0, we see that there exist constants ϵ ∈ (0, 1),

Q0 ≥ 2, and dj,k ∈ R, where 0 ≤ j < k < β, such that

∑
n≤x
a|n

α(n) =
µ0(β)F (σ0, a)

(β − 1)!σ0
xσ0(log x)β−1 + xσ0(log x)β−1

β−1∑
k=1

k∑
j=0

dj,k
F (j)(σ0, a)

(log x)k

+O
`

B2O(ω(a))aσ0−1(x/a)θ
˘

(3.12.3)

uniformly for all x ≥ 3, θ ∈ (σ0 − ϵ, σ0) and square-free a ∈ N with P−(a) > Q0,

where F (j)(σ0, a) is the jth order derivative of F (s, a) with respect to s evaluated at
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s = σ0. Again, one may compare this result with Lemma 3.3.3.

Now, if f :N → R is a strongly additive function with |f(p)|≤M for all primes p,

where M > 0 is an absolute constant, and if 0 < h0 < (3/2)2/3 is fixed but arbitrary,

then we obtain, by using (3.12.3) as a substitute for Lemma 3.3.3 and arguing as

before with the adoption of the technique used in [38, Section 4.2], that

M(x;m) = CmB(x)
m
2

˜

χm +O

˜

m
3
2

a

B(x)

¸¸

uniformly for all sufficiently large x and all 1 ≤ m ≤ h0(B(x)/M2)1/3, provided that

B(x) → ∞ as x → ∞. Analogously, let f :N → R is strongly additive such that

f(p) = O(
a

B(p)) for all primes p, B(x) → ∞ as x→ ∞, and

∑
p≤x

|f(p)|>ϵ
?

B(x)

α(p)
f(p)2

p
= o(B(x))

for any given ϵ > 0. Then M(x;m) = (µm + o(1))B(x)
m
2 for every fixed m ∈ N.

These results supplement Theorems 3.2.1 and 3.2.4. It may be worth pointing out

that in the proofs of these results one can simply take z = x1/v with v being a suitable

constant multiple of m. We invite the reader to fill in the details.

One of the key ingredients in the proof of Theorem 3.2.1 is an asymptotic formula

for ∑
n≤x
d|n

α(n),

which is provided by Lemma 3.3.3. More generally, let A(x) = {an}n≤x be a non-

decreasing sequence of positive integers, and suppose that

Ad,α(x) :=
∑
n≤x
d|an

α(n) = ρ(d)S(x) + rd(x) (3.12.4)
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3.12 Concluding Remarks

for square-free integers d ∈ N, where ρ:N → [0, 1] is a multiplicative function, and

rd(x) is a remainder term which is expected to be small for all d or small on average

over d. Here, ρ(d) can be viewed as the density of the set {n ∈ N: d | an} with respect

to the probability measure induced by α. In this sieve-theoretic setting one can derive,

without much difficulty, an analogue of [30, Proposition 4]. It may be of interest to

determine if such an analogue can be used to obtain general weighted Erdős–Kac

theorems for various interesting sequences {an} studied relatively recently, including

g(pn), φ(n), the Carmichael function λ(n), and the aliquot sum s(n) := σ(n) − n,

where g ∈ Z[x] is an irreducible polynomial, pn is the nth prime, and λ(n) denotes the

exponent of (Z/nZ)× (see [33], [25, 23] and [46]). Besides, the same approach may

also be adapted to prove results of weighted Erdős–Kac type for short intervals as

well as in the function field setting. We will explore these and other related problems

in future research.
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