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Abstract

The study of arithmetic functions, functions with domain N and codomain C, has
been a central topic in number theory. This work is dedicated to the study of the
distribution of arithmetic functions of great interest in analytic and probabilistic
number theory.

In the first part, we study the distribution of positive integers free of prime factors
less than or equal to any given real number y > 1. Denoting by ®(z,y) the count
of these numbers up to any given x > y, we show, by a combination of analytic
methods and sieves, that ®(z,y) < 0.6z/logy holds uniformly for all 3 < y < \/x,
improving upon an earlier result of the author in the same range. We also prove
numerically explicit estimates of the de Bruijn type for ®(z,y) which are applicable
in wide ranges.

In the second part, we turn to the topic of weighted Erdés—Kac theorems for
general additive functions. Our results concern the distribution of additive functions
f(n) weighted by nonnegative multiplicative functions a(n) in a wide class. Building
on the moment method of Granville, Soundararajan, Khan, Milinovich and Subedi, we
establish uniform asymptotic formulas for the moments of f(n) with a suitable growth
rate. Our method also enables us to prove a qualitative result on the moments which
extends a theorem of Delange and Halberstam on the moments of additive functions.
As a consequence, we obtain a weighted analogue of the Kubilius—Shapiro theorem

with simple and interesting applications to the Ramanujan tau function and Euler’s
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totient function, the latter of which generalizes an old result of Erdés and Pomerance
which shows that as an arithmetic function, the total number of prime factors of

values of Euler’s totient function satisfies a Gaussian law.
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Preface

The present work summarizes my thesis research as a doctoral student at Dartmouth
College. Explored herein are two intriguing topics from analytic and probabilistic
number theory: the distribution of rough numbers and Erdés—Kac type theorems on
the distribution of values of additive functions, both of which enjoy a rich history and
find applications in other branches of number theory. Chapter 1 of this work provides
historical backgrounds and motivations for the study of these two topics. The rest of
the chapters are devoted to the main results and their proofs, with Chapter 2 focusing
on explicit estimates for the number ®(x, y) of y-rough numbers not exceeding = and
Chapter 3 on weighted variants of the Erdés—Kac theorem. Also found in Chapter 3
are two applications to certain arithmetic functions of special interests.

My research on rough numbers was inspired by the problem of finding an explicit
constant C' > 0, as small as possible, for which the inequality ®(z,y) < Cz/logy
holds for all 1 < y <z, a problem proposed by Kevin Ford and communicated to me
by my advisor Carl Pomerance. Back then I was in my third year of graduate study,
having a hard time finding the right research topics and advisor for my thesis. I was
hoping to work with Carl in analytic number theory, but I was aware that he had
retired from his position. Nevertheless, we still kept in touch with each other and met
occasionally to discuss number theory. During one of our meetings, Carl brought up
the inequality on ®(x,y) above that he heard from Ford, who observed that one could

take C' = 2 and wondered whether smaller constants were also permissible. This little
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problem immediately seized my attention, in that I had a vague feeling that I might
be able to make progress based on what I read about sieve theory. After a weekend
of investigation of this problem, I succeeded in solving it by combining the arithmetic
large sieve with some explicit estimates on prime numbers. With Carl’s help, I was
able to simplify my proof and make it clearer and more compact than it originally
was, and this soon led to the publication of my paper [27], which laid the foundation
for my thesis research on this subject.

My interest in the distribution of additive functions, and especially in the Erdés—
Kac type theorems, grew out of my independent study of this topic during my third
year of graduate study. I was fortunate to obtain the firsthand knowledge about
Selberg’s central limit theorem for the Riemann zeta-function in an online graduate
course taught by Kannan Soundararajan, which piqued my interest in exploring the
limiting distribution of arithmetic functions. Then came an unexpected turn of events
in the summer of 2022, which completely changed the path of my graduate research. It
started with my encounter with the paper [38] on a weighted version of the Erdés-Kac
theorem. After examining the paper, I arrived at the conclusion that their argument
for the divisor functions could be generalized to treat a wide class of multiplicative
functions, which led me to prove a few theorems, record them in a draft, and send
it to Carl for feedback. Unaware of the dramatic event that would only unfold days
after, I received an encouraging message from him and was very happy to hear that he
was interested in my theorems. Soon we had a meeting during which I talked briefly
about my results. When we were about to call it a day, Carl asked “How about you
writing a thesis on rough numbers and Erdos-Kac?” Honestly, I was confused because
at that point I had found no faculty member in the department to advisor my research
on these topics. But then he continued “By working with me.” In retrospect, it is

hardly an exaggeration that the present work would not have existed had this event



not occurred.
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Chapter 1

Introduction

In this chapter, we give a thorough introduction to the two themes into which we shall
delve later: the distribution of rough numbers and the weighted Erdés—Kac theorems.
Our intention is to provide a bird’s-eye view of these themes but reserve the technical
material to later chapters.

Starting in Section 1.1, we introduce the notion of y-rough numbers and its count-
ing function ®(z,y), followed by a discussion of some previous work on the asymptotic
formulas and explicit estimates for ®(z,y) and then a preview of the main results
which will be restated formally and established later in Chapter 2. Moving on to
the second theme in Section 1.2, we discuss the history of the celebrated Erdos—Kac
theorem on the distribution of the number of distinct prime factors of a positive in-
teger as well as some recent work on its weighted variants, and we provide a simple
probabilistic heuristic for this theorem. Rather than formulate our main results here,
we opt to present two intriguing applications of them following our discussion on the
historical background while reserving the formal statements of our results and their

proofs to Chapter 3.



1.1 THE DISTRIBUTION OF ROUGH NUMBERS

Section 1.1
The Distribution of Rough Numbers

Let x > y > 1. Throughout this chapter, we shall always write u = u(x,y) =
log z/log y, and the letters p and ¢ will always denote primes. We say that a positive
integer n is y-rough if all the prime divisors of n are greater than y. Let ®(z,y)

denote the number of y-rough numbers up to x. Explicitly, we have

>

n<x
P~ (n)>y

where P~ (n) denotes the least prime divisor of n, with the convention that P~ (1) =
0o. When 1 < u < 2, or equivalently when /z < y < x, we simply have ®(x,y) =
m(x) — m(y) + 1, where 7(z) demotes the number of primes up to x. The function
®(x,y) is closely related to the sieve of Eratosthenes, an ancient algorithm for find-
ing primes, and ®(z,y) has been extensively studied by mathematicians. A simple

application of the inclusion-exclusion principle enables us to write

=Y { J (1.1.1)

d|P(y)

where |a] is the integer part of a for any a € R, p is the Mébius function, and P(y)
denotes the product of primes up to y. If y is relatively small in comparison with x,

say y = 2°(1, the above formula can be used to obtain

O(z,y) ~xH<1——) c (1.1.2)

oy log y

as x — oo, where v = 0.5772156... is the Fuler-Mascheroni constant. This is also

suggested by the heuristic based on the assumption that divisibility by a small prime
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p < y and divisibility by a different prime ¢ < y are close to being independent.
However, it turns out that (1.1.2) does not hold uniformly, as already exemplified
by the base case 1 < u < 2. The issue lies in the fact that the assumption on the
independence of divisibility fails to hold for primes that are relatively large compared
to x. For instance, if y € [\/z, z] is large, and if py, p2, p3s € (y/8,y] are three distinct
primes, whose existence is assured by Bertrand’s postulate, then for a randomly
chosen positive integer n < x, the events p; | n (1 < i < 3) are strongly correlated,
in the sense that they cannot occur simultaneously. For this reason, the charming
heuristic for (1.1.2) no longer makes sense when vy is relatively large in comparison
to x, and one would thus expect a heavy dependence of the asymptotic behavior of
®(z,y) on the relation between x and y, or equivalently, on the values of w.

In 1937, Buchstab [7] showed that for any fixed v > 1, one has ®(z,y) ~
w(u)x/logy as © — oo, where w(u) is defined to be the unique continuous solu-
tion to the delay differential equation (uw(u)) = w(u — 1) for u > 2, subject to
the initial value condition w(u) = 1/u for v € [1,2]. Comparing this result with
the asymptotic formula obtained from (1.1.1), one would expect that w(u) — ™7 as
u — oo. Indeed, it can be shown [56, Corollary I11.6.5] that w(u) = e 4+ O(u~"/?)
for w > 1. Moreover, it is known that w(u) oscillates above and below e~ infinitely
often. The following graphs generated by Mathematica provide a snapshot of the

behavior of w(u) on [1,7].
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Figure 1.1: The Buchstab Function w(u) on [1, 7]
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Buchstab’s asymptotic formula can be proved easily based on the following identity
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[56, Theorem II1.6.3] named after him:

O(z,y) = d(x,2) + Z Zq)(x/p”,p) (1.1.3)

y<p<z v>1

for any z € [y,z]. The Buchstab function w(u) then appears naturally in the iter-
ation process, starting with ®(x,y) ~ x/(ulogy) in the range 1 < u < 2. Since
1/2 < w(u) < 1 for u € [1,00), Buchstab’s asymptotic formula suggests that the
relation ®(z,y) < z/logy holds uniformly for x > y > 1. Thus, it is of interest
to seek numerically explicit estimates for ®(x,y) that are applicable in wide ranges.
Confirming a conjecture of Ford, the author [27] showed that ®(x,y) < z/logy holds
for all x > y > 1, which is essentially best possible when 2'7¢ < y < ex, where
e € (0,1) is fixed. With a bit more effort, one can show, using the Buchstab identity

(1.1.3), that

x 1
P = O 1.14
) = Togy (w<u) ' (logy)) .
uniformly for 2 <y < \/z (see [56, Theorem II1.6.4]).

In [10] de Bruijn provided a more precise approximation for ®(z, y) than w(u)z/log y.
Let us fix some yp > 2 for the moment. Suppose that there exist a positive con-
stant Co(yo) and a positive decreasing function R(z) defined on [yo, 00), such that

R(z) > 27!, that R(z) |l 0 as 2 — oo and that for all z > 3, we have

Im(2) —li(2)|< IO;R(Z) (1.1.5)
and
/Oo o 15_2 1o dt < Co(yo)R(2), (1.1.6)
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where li(z) is the logarithmic integral defined by

s odt

li(z) := —.
i(z) o logt

The classical version of the Prime Number Theorem allows us to take R(z) = exp(—cy/log z)
for some suitable constant ¢ > 0. Using the zero-free region of Korobov and Vino-
gradov for the Riemann zeta-function, we obtain R(z) = exp(—¢(log 2)3/*(log log 2)~/?)
for some absolute constant ¢ > 0. If the Riemann Hypothesis holds, then one can
take R(z) = "2~/ log® z, where ¢ > 0 is an absolute constant.

To state de Bruijn’s result, we define

1—u

It is easy to see that 0 < p,(u)logy < 1 —y'~* and that for every fixed u > 1, we
have p,(u)logy — w(u) as y — oo. Precise expansions for i, (u) in terms of the
powers of logy can be found in [56, Theorem I11.6.18]. When 1 < u < 2, the change

of variable t = log v/log y shows that

1y () = /1 Syt = /y "W i) — i),

log v

Since ®(z,y) = m(z) — 7(y) + 1 when 1 <u < 2, (1.1.5) clearly implies that

wR@)) '

O(z,y) = py(u)z + (v(z) = li(z)) — (v(y) —1i(y)) + 1 = py(u)z + O ( log y

It can be shown using (1.1.5) and (1.1.6) that

11 (1 - 1) = S (14 O(R)).

Py p logy
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Thus we have, equivalently,

(@,y) = (e slogy [ (1 _ ]13) +0 (IR(’”) | (1.1.7)

p<y log Y

Essentially, de Bruijn [10] showed that this formula holds uniformly for z > y > yo.

In Chapter 2 we shall prove several numerically explicit estimates for ®(z,y). As
one can see from Figure 1.1 above, the values of w(u) for u > 2 indicate that better
upper bounds for ®(z,y) than x/logz should be expected in the narrower range
2 <y < y/x. In recent work jointly with Pomerance [28], the author showed that
®(z,y) < 0.62/logy holds for all 3 < y < /x. We shall present the proof of this
result in Section 2.2.

It is also of interest to obtain numerically explicit versions of de Bruijn’s formula

(1.1.7). In Section 2.3 we shall show that for all z >y > 2, we have

Bz, y) — py(w)e'zlogy [ | (1 _ ]1))

p<y

x log y
< 4403611 ——— — .
(logy)?* P ( 6.315)

Moreover, if one assumes the validity of the Riemann Hypothesis, then

xlogy
VY

< 0.449774

O(z,y) — py(uw)ezlogy [ | <1 _ %)

p<y

holds for all x > y > 11.

Section 1.2
The Weighted Erd6s—Kac Theorems

The celebrated Erdés—Kac theorem, first proved by Erdés and Kac [24] in 1940, states

that if w(n) denotes the number of distinct prime divisors of a positive integer n (not
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to be confused with the Buchstab function defined in Section 1.1), then

1 w(n) —loglogn
lim — - < V=90 1.2.1
P T # {n =7 vloglogn V) ( )

for any given V' € R, where

1 v —v2/2
@(V) = \/—2777_ e dv

is the cumulative distribution function of the standard Gaussian distribution. This
statistical result is a direct upgrade to an earlier theorem of Hardy and Ramanujan on
the normal order of w(n) (see [34] and [35, Theorem 431]), which asserts that given
any € > 0, the inequality |w(n) — loglogn|< eloglogn holds for all but o(z) values
of n < x. In fact, Erdés and Kac proved in the same paper a more general result
in which the function w(n) can be replaced by any strongly additive function f that
is bounded on primes and has an unbounded “variance” 7 __ f(p)?/p. Recall that
an arithmetic function f:N — C is said to be additive if f(mn) = f(m) + f(n) for
all positive integers m,n € N with ged(m,n) = 1. It is called strongly additive if it
also satisfies the condition that f(p”) = f(p) for all prime powers p”. Thus, strongly
additive functions are completely determined by their values at primes, which makes
them a particularly nice subclass of additive functions.

Analogously, it can be shown that (1.2.1) remains true if one replaces w(n) by
its cousin Q(n), which denotes the total number of prime factors of n, counting

multiplicity. Indeed, this follows from the fact that

> (Qn) - w(n)) = O(x). (1.2.2)
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In particular, given any € > 0 we have

# {n <x:Qn) —w(n) > e\/loglogn} =0 (m) ;

which is sufficient for deducing from the Erdés—Kac theorem that (1.2.1) also holds
with (n) in place of w(n).

The Erdos—Kac theorem was first predicted by Kac. From a probabilistic point of
view, one may model a positive integer n < x by a random variable n with the uniform
probability distribution on [1,z]. For each prime p < z, let X,(n) be a Bernoulli
random variable which takes value 1 if p | n and 0 otherwise. Then Prob(X,(n) =

1) =|z/p|]/x=1/p+ O(1/z). It is clear that

wn) =3 X,(n).

p<z

The expectation of w(n) is easily seen to be

Elwm) = Y E(X,m) =3 (1 +0 (i)) —loglogz + O(1).

p<z p<x p

by Mertens’ second theorem [35, Theorem 427]. Assuming that the events p | n are
mutually uncorrelated for distinct primes p, so that {X,(n)},<. is a set of independent

random variables, we see that the variance of w(n) is

Var(w(m) = 3 Var(X,(m)) = 3 (]19 <1 - }9) +0 e)) — loglogz + O(1),

p<z p<z

since

Vr (X, () = BCY, () - (B05,)* =1 (1= ) +0 (1),

P T

The central limit theorem for independent random variables then “implies” that as
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r — oo, the distribution of
w(n) — loglog

v/log log x

approaches the standard Gaussian distribution. This heuristic for (1.2.1) resembles

(1.2.3)

in spirit that given by Kac. However, as we have seen in Section 1.1, the events
p | n are in fact far from being mutually uncorrelated, especially for primes p that
are relatively large compared to z, and the effect of such correlation on the limiting
distribution of (1.2.3) remains to be determined. Having obtained such an elegant
heuristic, which was far from a rigorous proof, Kac gave a lecture at Princeton on the
average number of prime factors of a random integer. Erdds, who was in the audience,
soon interrupted and announced that he found a proof. This led to the publication
of [24] on this subject by the two mathematicians, which opened the door to a new
branch of mathematics now called “Probabilistic Number Theory”.

The original proof of the Erd6s—Kac theorem by Erdos and Kac used a combination
of the central limit theorem and Brun’s sieve and is quite complicated. Later, LeVeque
[39, Theorem 1] introduced some modifications to this proof and obtained a quantita-
tive version of (1.2.1) with a rate of convergence given by O(logloglog x/+/loglog ).
A different proof, which is also quite involved, makes use of an asymptotic formula of
Selberg [53] for 7 (x) uniformly in the range k < loglogz + V+/loglogx to estimate
the number of natural numbers n < z with w(n) < loglogz + V+/loglogz, where
7, (x) counts the number of natural numbers n < x with w(n) = k. A related ap-
proach was given by Rényi and Turén [49], who actually proved the stronger result,

conjectured by LeVeque [39], that

w(n) — loglogn
v/loglogn

é - {n < < V} —o(V)+0 (;) (1.2.4)

v/loglog x

holds uniformly for all V' € R and all > 3, where the rate of convergence O(1/+/loglog z)

10



1.2 THE WEIGHTED ERDOS—KAC THEOREMS

is best possible in the sense that one cannot replace it by o(1/4/loglog x) without los-
ing uniformity in V. The analytic approach of Rényi and Turan is rather deep. It
requires, among other things, the asymptotics for 7 (z) due to Erdds [22] and Sathe
[51], analytic properties of the Riemann zeta-function on the line ¢ = 1, and the
classical result from probability theory that a distribution is completely determined
by its characteristic function. In order to obtain the optimal rate of convergence in
(1.2.4), they also had to invoke the Berry-Esseen inequality from probability theory.

There is yet a third approach to proving the Erdés—Kac theorem (1.2.1). This
approach, first suggested by Kac [37], is based on the fact that a Gaussian distri-
bution is completely determined by its moments, which follows immediately from [4,
Theorems 30.1, 30.2]. Hence, one can derive (1.2.1) by showing directly that for every

m € N

w[3

% > (w(n) = loglog )™ = (um, + o(1))(loglog z) (1.2.5)

n<x

as x — oo. Here p,, is the mth moment of a standard Gaussian distribution given by

m! /m!l, if 2| m,
Hm =
0, otherwise,
where
[(m—1)/2]
m!l:= H (m — 2k)
k=0

for every m € N. It is easy to see by Mertens’ theorem [35, Theorem 427] that
the average of w(n) for n < z is asymptotically loglog x, which yields (1.2.5) in the
case m = 1. Turdn [59] proved an asymptotic formula in the case m = 2. Early
proofs of (1.2.5) via the method of moments are due to Delange [12] in 1953 and
Halberstam [31] in 1955, both of which are very complicated. Delange’s proof relies

on an asymptotic formula for the partial sum of the reciprocals of positive integers

11
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n with w(n) = k, which is intimately related to m(z). Later, he [13] provided
an elementary proof of (1.2.5) for strongly additive functions, which is similar to but
simpler than that of Halberstam. By exploiting an asymptotic formula for anz 22
with z € C, Delange [14] was also able to obtain an asymptotic expansion for the
left-hand side of (1.2.4), improving upon the result of Rényi and Turan. Since m(x) is
precisely the coefficient of z* in the partial sum of z*(™ his method is also related to
earlier proofs of the Erdés—Kac theorem. On the other hand, Halberstam’s proof was
simplified and rendered more transparent by Billingsley [3] in 1969, who made further
use of ideas and tools from probability theory. In 2007, Granville and Soundararajan
[30] derived asymptotic formulas for the moments which hold uniformly in the range
m < (loglog x)'/3. Their method is so flexible that it can also be modified to study
the distribution of values of additive functions in a rather general sieve-theoretic
framework.

More generally, one can study the distribution of values of w(n) weighted by
certain nonnegative multiplicative functions a(n). Recall that an arithmetic function
a:N — C is said to be multiplicative if o(1) = 1 and a(mn) = a(m)a(n) for all
positive integers m,n € N with ged(m,n) = 1. For instance, Elliott [21] showed,

based on the Landau-Selberg-Delange method, that

lim (Z d(n)c> > d(n)® = (V) (1.2.6)

n<x n<x

w(n)<2¢log log x4V +/2¢log log x

for any given ¢ € R and V' € R, where d(n) denotes the number of positive divisors
of n. Take the case ¢ = 1, for example. For “normal” numbers n < x with about
loglog x prime factors, d(n) is near to (logz)°82, but as is well-known and easy to
see, on average d(n) is more closely modeled by log x. This mismatch occurs because

the average of d(n) is skewed by rare values of n with d(n) abnormally large. For

12
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instance, given any € € (0,1), we have [35, Theorem 317] d(n) > 2(1-9)len/loglogn fo
any large primorial n, i.e., any large positive integer n which is the product of the
first k primes for some k € N. Elliott’s theorem quantifies this mismatch, so that in
particular, numbers n most influential to the average of d(n) have about 2loglogz
prime factors. And in fact, there is a Gaussian distribution with variance /2 loglog .
It is this type of theorem that we refer to as a weighted Erdos—Kac theorem. At issue
here is what weights, like d(n)¢, can be handled. Of course, one can also consider
other additive functions than w(n).

Building on the method of Granville and Soundararajan, Khan, Milinovich and

Subedi [38] recently proved

lim (Z dk(n)) > dy(n) = (V)

n<lx n<lx

w(n)<kloglog z+V+/kloglogx

for any given k € N and V € R, where
dk(n) = # {(al, ...,ak) € Nk:al e A = n}

is the k-fold divisor function. Weighted versions of the Erddés-Kac theorem with
general nonnegative multiplicative weight functions «(n) have also been obtained
by Elboim and Gorodetsky [18] and Tenenbaum [57, 58]. Elboim and Gorodetsky
showed, by using a generalization of Billingsley’s argument and a mean-value estimate
due to de la Breteche and Tenenbaum [11, Theorem 2.1], that if there exist absolute

constants A,60 > 0, d > —1 and r € (0,2), such that

T Oé(p)iogp s+ 0 (
p

p<z

)

13



1.2 THE WEIGHTED ERDOS—KAC THEOREMS

and such that a(p”) = O((rp?)") for all prime powers p”, then we have

lim (Z a(n)) > a(n) = (V)

n<lz n<x

Q(n)<6loglog z+V+/0loglog x

for any given V € R (see the first part of [18, Theorem 1.1]). This powerful result,
which can be shown to hold with w(n) in place of (n) by the same argument, clearly
includes the theorem of Elliott and that of Khan, Milinovich and Subedi as special
cases. On the other hand, the theorem of Elboim and Gorodetsky follows from an even
more general and technical result of Tenenbaum [57, Corollary 2.5], which we will not
state here. Tenenbaum’s proof utilizes characteristic functions and his effective mean-
value estimates for a wide class of multiplicative functions, and it provides effective
estimates for the rate of convergence for the distribution functions in consideration.

In Chapter 3 we shall generalize the method used by Granville, Soundararajan,
Khan, Milinovich and Subedi to study the distribution of additive functions f(n)
weighted by nonnegative multiplicative functions a(n) in a wide class M*, which will
be defined in Section 3.1. Our work is the first to apply this method to prove weighted
Erdés—Kac theorems with general additive functions and multiplicative weights. We
obtained uniform estimates for moments of strength comparable to that of the original
estimate of Granville and Soundararajan. In particular, we showed that under certain
conditions, the distribution of f(n) with respect to the natural probability measure
induced by «(n) is approximately Gaussian, which generalizes the result of Elboim
and Gorodetsky [18] and that of Delange and Halberstam [15]. For technical reasons,
we defer the formulation of our theorems until Section 3.2. Instead, we give here two
interesting applications to the distribution of arithmetic functions of special interests,
which were only studied previously by different methods.

Let 7(n) be the Ramanujan tau function, whose definition and properties can be

14



1.2 THE WEIGHTED ERDOS—KAC THEOREMS

found in Section 3.1. The following weighted Erdés—Kac theorem concerning |7(n)|

was first obtained by Elliott [19] in 2012 using ideas from probability theory.

Theorem 1.2.1. Let

Ar(z) = ) 7(p)’p Ploglr(p)p 7,

p<lz

7(p)#0
B(x)i= 3 7)™ (loglr(p)p )",

p<z
7(p)#0

Then we have

lim <Zf(n)2n—”> > ()t =do(V) (1.2.7)

n<x n<x

|7 (n) =172 <exp(Ar (2)+V y/Br ()
for every fired V € R.

We remark that the condition 7(p) in the definitions of A,(x) and B,(x) may be
dropped, since t?log|t|— 0 as t — 0. More generally, Theorem 1.2.1 holds with 7(n)
replaced by the Fourier coefficients of any elliptic holomorphic new form of weight at
least 2 (see [20, Theorem 1]). Furthermore, using the Sato—Tate conjecture for non-
CM holomorphic modular forms of weights at least 2, established by Barnet-Lamb,
Geraghty, Harris and Taylor [1], we may estimate A,(x) to be (1/4 + o(1))loglog x
and replace B, (r) by ((72/12 — 5/8)loglog z)/2.

Along with (1.2.6), Elliott [21] also showed

lim (Z d(n)2> > dn)? =a(V). (1.2.8)

n<x n<x
d(n)<exp (4 log 2 log log z+V 4/ 4(log 2)?2 log log x)

15



1.2 THE WEIGHTED ERDOS—KAC THEOREMS

If we view the Dirichlet series of d(n)

Z df;:) = C<5)2 = H (1 —2pF +p72s)—1

n>1 p

as having an Euler product of degree 2, with ((s)? its symmetric square and

P
ot (29
the analogue of the corresponding Rankin—Selberg L-function, then (1.2.8) may be
viewed as a limiting case of the aforementioned generalization of Theorem 1.2.1 for
the coefficients of an Eisenstein series of weight 1 with respect to the modular group
(see [20]).
Our first application is a simple proof of Theorem 1.2.1 as a corollary of our general
theorems, which we present in Section 3.10.
Our second application concerns the distribution of the number of prime factors

of values of Euler’s totient function (n), which is defined explicitly by

o) ==n ] (1 _ %) |

pln

Recall that €2(n) denotes the total number of prime factors of n, counting multiplicity.
In [25] (with the proof of a lemma later corrected in [23]), Erd6s and Pomerance proved

that for every fixed V € R, we have

(log log x)3/?

lim l . {n < x:Qp(n)) < %(loglogm)Q +V /3

T—00 I

} —o(V).  (1.2.9)

Recently, Wang, Wei, Yan and Yi [60, Theorem 1.3] showed that the above holds

with ®(V') replaced by §(S)®(V) if we let n run over those positive integers whose

16



1.2 THE WEIGHTED ERDOS—KAC THEOREMS

largest prime factors lie in a given subset S of primes of a positive relative natural
density 6(S).

It is also natural to explore weighted variants of (1.2.9) with multiplicative weights
other than 1. In Section 3.11 we give a simple and straightforward extension by show-
ing that if the multiplicative weight «(n) in the class M* also satisfies the condition
that a(p) is close to Bp7~! for “almost all” primes, where 3,00 > 0 are absolute
constants, then the distribution of Q2(p(n)) weighted by a(n) is approximately Gaus-
sian with mean 3(loglog z)?/2 and variance (loglogz)®/3. The following result is a

special case of this.

Theorem 1.2.2. Given any k > 0 and ¢,V € R, we have

lim (Zdﬁ(ny) > de(n)* = ®(V). (1.2.10)

n<x n<x
Q(p(n))<rc(loglog )2 /2+V /K (loglog x)3 /3
And the same holds if d..(n) is replaced by k*™ or K™ where in the latter case, one

has to assume k¢ < 2.

It is worth mentioning that the condition that a(p) is close to Bp“~! for “al-
most all” primes can be relaxed if one is content with abstract expressions of the
means and variances such as A,(z) and B,(x) in Theorem 1.2.1. For instance, it
can be shown that Q(p(n)) still possesses a Gaussian distribution if «(p) is bounded
above and bounded away from 0 for “almost all” primes. Less straightforward gen-
eralizations will require information about the distribution of values of a(p), or the
more tractable function a(n)A(n), in arithmetic progressions, where A(n) is the von

Mangoldt function. We hope to return to this problem in future research.

17



Chapter 2

The Distribution of Rough

Numbers

In this chapter we study the distribution of rough numbers, numbers which are free
of small prime factors. In Section 2.1, we give precise formulations of our results
previewed in Section 1.1. Sections 2.2 and 2.3 are devoted to the proofs of these
results.

Before embarking on our study of rough numbers, we extend the definition of w(u)
by setting w(u) = 0 for all u < 1, so that w(u) satisfies the original delay differential
equation for all w € R\ {1,2}. It is clear that w(u) has a jump discontinuity at u = 1,
but its right derivative at v = 1 exists. On the other hand, despite the fact that w(u)
is only continuous but not differentiable at u = 2, both the left and right derivatives
of w(u) at u = 2 exist. Thus, if we write «'(1) and w'(2) for the right derivatives of
w(u) at w =1 and u = 2, respectively, then we have (uw(u))’ = w(u—1) for all u € R.

And we shall adopt this convention throughout the chapter.

18



2.1 MAIN RESULTS

Section 2.1
Main Results

Our first result is the inequality ®(x,y) < 0.6x/logy proved in [28], which improves
upon the inequality ®(z,y) < z/logy in the range y < 4/x. More precisely, we have

the following theorem.

Theorem 2.1.1. For all 3 < y < \/x, we have ®(x,y) < 0.6z/logy. The same

inequality holds when 2 <y < \/z and z > 10.

Theorem 2.1.1 provides a fairly good upper bound for ®(z,y) in the range 2 <
y < y/x, especially considering that the absolute maximum of w(u) over [2,00) is
given by My = 0.5671432..., attained at the unique critical point u = 2.7632228... of
the function (log(u — 1) 4+ 1)u™" on [2,3]. The proof of Theorem 2.1.1 will be given
in the next section.

In Section 2.3 we shall derive an explicit version of (1.1.7), which will then be
applied to obtain numerically explicit estimates with suitable yo and R(y). Our main

results are summarized in the following theorem.

Theorem 2.1.2. For all x > y > 2, we have

1 T logy
®(z,y) — uy(u)e“’wlong (1 — ;9) < 4.403611W exp (— 6.315) .

p<y

Conditionally on the Riemann Hypothesis, we have

xlogy

1
O(x,y) — uy(u)evxlong <1 - ]—)) < 0.449774

Py

forall x >y > 11.

19



2.2 THE 0.6 INEQUALITY

In view of the asymptotic formula

1 e
1(-3)- i
p logy

p<y

it is natural to obtain an approximation of ®(x,y) by the simpler p,(u)x, which
is sometimes more convenient to use. The following consequence of Theorem 2.1.2

provides approximations of this type.

Corollary 2.1.3. For all x > y > 2, we have

T logy
Oz 1) — 4.434084—— - :
P (2, y) — gy (u)z]< (log )34 P ( 6.315)

Conditionally on the Riemann Hypothesis, we have

xlogy

|D(z,y) — py(w)z|< 0.460680

forallx >y > 11.

Section 2.2

The 0.6 Inequality

This section is devoted to the proof of Theorem 2.1.1. The tools which we shall use
are numerically explicit estimates of primes, the inclusion-exclusion principle, and a
numerically explicit version of the upper bound in Selberg’s sieve. The main idea of
the proof may be summarized as follows. For small numerical values of y, the desired
inequality follows by a careful application of the inclusion-exclusion principle. The
case where u is large is then settled by applying our explicit version of Selberg’s upper

bound sieve. After this we are left with the case where u is small. Starting with the

20



2.2 THE 0.6 INEQUALITY

case 2 < u < 3, which can be handled easily by conventional analytic approaches, we
iterate based on Buchstab’s identity to complete the proof for all small values of u in

consideration.

2.2.1. A Prime Lemma

Let 7(x) denote the number of primes p < z. Recall

o) = [
o logt

where the principal value is taken for the singularity at t = 1. There is a long history
in trying to find the first point when 7(z) > li(x), which we now know is beyond 10'.

We prove a lemma based on what is currently known.
Lemma 2.2.1. Let fy = 2.3 x 107, For x > 2, we have 7(x) < (1 + B) li(x).

Proof. The result is true for x < 10, so assume x > 10. Consider the Chebyshev

function

O(z) = Z log p.

p<z
We use [40, Prop. 2.1], which depends strongly on extensive calculations of Biithe
8, 9] and Platt [45]. This result asserts in part that 0(x) < x —.054/x for 1427 < 2 <
10" and for larger z, 0(x) < (1+ f)x. One easily checks that 6(z) < z for x < 1427,
so we have

O(x) < (14 Bo)z, x>0.

By partial summation, we have

NRMLC L0

- log x t(logt)?

(1+ Bo)x 00t Toodt
log +/2 t(logt)? dt+ {1+ 5o) /10 (logt)?

21
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2.2 THE 0.6 INEQUALITY

Since [ dt/(logt)? = —t/logt + li(t), we have

(@) < (1+ Bo) li(z) + /10 Ot 4 (14 Bo)(10/log 10 — 1(10))
" o t(logt)? " g
< (14 o) li(z) — .144. (2.2.1)
This gives the lemma. O]

After checking for z < 10, we remark that an immediate corollary of (2.2.1) is the

inequality

m(x) —k < (14 Bo)(i(z) — k), 2<k<n(x), k<10 (2.2.2)

2.2.2. Presieving: Inclusion—Exclusion Revisited

For small values of y > 2, we can do a complete inclusion—exclusion to compute

®(z,y). Let P(y) denote the product of the primes p <y. We have

Bla,y) = > u(d) EJ . (2.2.3)

d|P(y)

As a consequence, we have

O(x,y) < Y ,u(d)% + > 1=z]] (1 —~ %) + 2L, (2.2.4)

d|P(y) d\(g)(y)1 p<y
p(d)=

We illustrate how this elementary inequality can be used in the case when 7(y) =
5, that is, 11 < y < 13. Then the product in (2.2.4) is 16/77 < .207793. The

remainder term in (2.2.4) is 16. And we have

O (z,y) < .207793z + 16 < .6x/log 13
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2.2 THE 0.6 INEQUALITY

when x > 613. There remains the problem of dealing with smaller values of x, which

we address momentarily. We apply this method for y < 71.

Table 2.1: Small y.

y interval | x bound | max

2, 3) 22 61035
[3,5) 51 57940
[5,7) 96 55598
[7,11) | 370 56634
[11,13) | 613 55424
[13,17) | 1603 56085
[17,19) | 2753 54854
[19,23) | 6296 55124
23,29) | 17539 | 55806
20,31) |30519 | .55253
31,37) | 76932 | 55707
37,41) | 1.6 x 10° | 55955
[41,43) | 2.9 x 10° | .55648
[43,47) | 5.9 x 10° | .55369
[47,53) | 1.4 x 108 | 55972
[53,59) | 3.0 x 10 | .55650
[59,61) | 5.4 x 106 | 55743
61,67) | 1.2 x 107 | 55685
[67,71) | 2.4 x 107 | .55641

Pertaining to Table 2.1, for x beyond the “z bound” and y in the given interval,
we have ®(x,y) < .6x/logy. The column “max” in Table 2.1 is the supremum of
®(x,y)/(x/logy) for y in the given interval and z > y* with z below the z bound.
The max statistic was computed by creating a table of the integers up to the x bound
with a prime factor < y, taking the complement of this set in the set of all integers
up to the z bound, and then computing (jlogp)/n where n is the jth member of the
set and p is the upper bound of the y interval. The max of these numbers is recorded
as the max statistic. The computation was done by Mathematica.

As one can see, for y > 3 the max statistic in Table 2.1 is below .6. However, for

the interval [2,3) it is above .6. One can compute that it is < .6 once z > 10.

23



2.2 THE 0.6 INEQUALITY

This method can be extended to larger values of y, but the = bound becomes
prohibitively large. With a goal of keeping the  bound smaller than 3 x 107, we can
extend a version of inclusion-exclusion to y < 241 as follows.

First, we “pre-sieve” with the primes 2, 3, and 5. For any x > 0 the number of
integers n < x with ged(n,30) =1 is (4/15)z + r, where |r|< 14/15, as can be easily
verified by looking at values of = € [0,30]. We change the definition of P(y) to be

the product of the primes in (5,y|. Then for y > 5, we have

4 14
C > N(d)3+1—52()

d|P(y)

However, it is better to use the Bonferroni inequalities in the form

OB SEITED o] U EFRUERO)

]<4 d|P )
v(d)=j

say, where v(d) is the number of distinct prime factors of d. (We remark that the ex-
pression b(y) could be replaced with 12b(y).) The inner sums in s(y) can be computed

easily using Newton’s identities, and we see that

O(z,y) < .6x/logy for x> 0by)/(.6/logy — s(y)).

We have verified that this x bound is smaller than 30,000,000 for y < 241 and we
have verified that ®(x,y) < .6z/logy for x up to this bound and y < 241.

This completes the proof of Theorem 2.1.1 for y < 241.

2.2.3. Large u: Selberg’s Sieve

In this section we prove Theorem 2.1.1 in the case that u = logxz/logy > 7.5 and

y > 241. Our principal tool is a numerically explicit form of Selberg’s sieve.
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2.2 THE 0.6 INEQUALITY

Let A be a set of positive integers a < z and with |A|~X. Let P = P(y) be a
set of primes p < y. For each p € P we have a collection of «(p) residue classes mod
p, where a(p) < p. Let P = P(y) denote the product of the members of P. Let g
be the multiplicative function defined for numbers d | P where g(p) = a(p)/p when
p € P. We let

vTT0 - gt = IT (1- °2).

peEP pEP

We define 74(.A) via the equation

D 1=g(d)X +r4(A).

acA
dla

The thought is that 74(.A) should be small. We are interested in S(A, P), the number
of those a € A such that a is coprime to P.

We will use Selberg’s sieve as given in [29, Theorem 7.1]. This involves an auxiliary
parameter D < X which can be freely chosen. Let h be the multiplicative function
supported on divisors of P such that h(p) = ¢(p)/(1 — g(p)). In particular if each
a(p) = 1, then each g(p) = 1/p and h(p) = 1/(p — 1), so h(d) = 1/¢(d) for d | P,
where ¢ is Euler’s function. Henceforth we will make this assumption (that each

a(p) =1). Let

J=Jp= Y Md), R=Rp=> m(drdA)
d|P dlp
d<+/D d<D

where 73(n) = dz(n) is the number of ordered factorizations n = abc with a,b,c € N.

Selberg’s sieve gives in this situation that

S(A,P) < X/J+R. (2.2.5)
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2.2 THE 0.6 INEQUALITY

Note that if D > P2, then

J=>"h(d)=TJ+nrp)=][0-9p)" =V

dlp pEP pEP

so that X/J = XV. This is terrific, but if D is so large, the remainder term R
in (2.2.5) is also large, making the estimate useless. So, the trick is to choose D
judiciously so that R is under control with J being near to V1.

Consider the case when each |ry(A)|< r for a constant . In this situation the

following lemma is useful.

Lemma 2.2.2. Suppose that |rs(A)|< r for all d < D with d | P(y). Fory > 241,

we have

R<r Z 73(d) STD(logy)QH (l_l—%) :

d<D p<y
d|P(y) pg¢P

Proof. Let 7(n) = d(n) be the number of positive divisors of n. Note that

R (CHRCHNIEHE

p<y p<y
pgEP

One can show that for y > 241 the first product on the right is smaller than .95(log y)?,

but we will only use the “cleaner” bound (logy)? (which holds when y > 53). Thus,

SRR RUEDNTP

d<D d<D d<D
d|P(y) d|P(y) ilP) d|P(y )
2\ 1
<DZ <Dlogy)H<1+—) .
j<D p<y p
ilP(y) p¢P
This completes the proof. O

To get a lower bound for J in (2.2.5) we proceed as in [29, Section 7.4]. Recall
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2.2 THE 0.6 INEQUALITY

that we are assuming each a(p) = 1 and so h(d) = 1/p(d) for d | P.

Let

1
gap =T}

a>v/D
P
so that I + J = V1. Hence
J=V 1 1-T=V11-1V), (2.2.6)

so we want an upper bound for I'V. Let € be arbitrary with £ > 0. We have

2e 2e
[<D~ dd =D (le)’
d|P #(d) pEP P

and so, assuming each a(p) = 1,

2e

1
IV < D (1 + 2 ) — f(D,P.c). (2.2.7)
peEP p

In particular, if y > 241 and each |ry(A)|< r, then

S(A,P) < XV (1 - f(D,P,e))"" 4+ rD(logy)? H (1 + ;) h : (2.2.8)
i

We shall choose D so that the remainder term is small in comparison to XV, and

once D is chosen, we shall choose € so as to minimize f(D,P,¢).

The case when y < 500,000 and v > 7.5. We wish to apply (2.2.8) to estimate
®(x,y) when u > 7.5, that is, when z > y">. We have a few choices for A and P.
The most natural choice is that A is the set of all integers < z, X = x, and P is

the set of all primes < y. In this case, each |ry(A)|< 1, so that we can take r = 1
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2.2 THE 0.6 INEQUALITY

in (2.2.8). Instead we choose (as in the last section) A as the set of all integers < x
that are coprime to 30 and we choose P as the set of primes p with 7 < p <y. Then
X = 42/15 and one can check that each |ry(A)|< 14/15, so we can take r = 14/15
in (2.2.8). Also, 1

2\ 3
}g‘é (1 ! p) 147

when y > 5. With this choice of A and P, (2.2.8) becomes

(x,y) < XV (1 -0 I] (1 + P 1)) + %D(log y)%, (2.2.9)

7<p<y p

when y > 241.
Our “target” for ®(x,y) is .6x/logy. We choose D here so that our estimate for
the remainder term is 1% of the target, namely .006x/logy. Thus, in light of Lemma

2.2.2, we choose

D = .03z/(logy)>.

We have verified that for every value of y < 500,000 and z > y"® that the right
side of (2.2.9) is smaller than .6z /log y. Note that to verify this, if p, ¢ are consecutive
primes with 241 < p < ¢, then S(A,P) is constant for p < y < ¢, and so it suffices
to show the right side of (2.2.9) is smaller than .6x/logq. Further, it suffices to take
x = p™d, since as x increases beyond this point with P and e fixed, the expression
f(D,P,e) decreases. For smaller values of y in the range, we used Mathematica to
choose the optimal choice of €. For larger values, we let € be a judicious constant over

a long interval. As an example, we chose ¢ = .085 in the top half of the range.

The case when y > 500,000 and u > 7.5. As in the discussion above we have a

few choices to make, namely for the quantities D and e. First, we choose z = 3",
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since the case z > y"° follows from the proof of the case of equality. We choose D as

before, namely .03z /(logy)?. We also choose

e =1/logy.

Our goal is to prove a small upper bound for f(D,P,¢) given in (2.2.7). We have

f(D,P,e) < D™ exp ( Z i 1) :

7<p<y p

We treat the two sums separately. First, by Rosser—Schoenfeld [50, Theorems 9,

20], one can show that

1
—Z— < —loglogy — .26
p

p<y

for all y > 2, so that

1
— ) =< —loglogy — .26 + 31/30 (2.2.10)

7<p<y
for y > 7. For the second sum we have

Z pEl =7 (n(y) -y + /ly(l —2e)(nm(t) — 4)t* 2 dt.

7<p<y !
At this point we use (2.2.2) , so that

Y

! > op < (li(y) -y + /1 (1 —2e)(li(t) — 4)t** at

L+ Bo ot !
y Yy t2€71
dt
11 * /11 logt
11

= (li(y) — 4)y25_1 — (li(t) — 4)t2e—1
= (li(11) — 4)11% 71 + 1li(y™) — 1i(11%),

— (li(11) — 41121 4 1i(12)]
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and so

1
L+ fo 7<p<y

pEl < 7 4 (13(11) — 4)11% 7+ li(y®e) — 1i(11%). (2.2.11)

There are a few things to notice, but we will not need them. For example, li(y*) =
li(e?) and 1i(11%) ~ log(11%* — 1) + .
Let S(y) be the sum of the right side of (2.2.10) and 1 + f, times the right side
of (2.2.11). Then
f(D,P,e) < D%e5W),

The expression XV in (2.2.9) is

1
x H <1 — —) .
P<y p
We know from [40] that this product is < e™7/logy for y < 2 x 10°, and for larger

values of y, it follows from [17, Theorem 5.9] (which proof follows from [17, Theorem

4.2] or [6, Corollary 11.2]) that it is < (1 + 2.1 x 107°)e™ /logy. We have

O(x,y) < XV (1— f(D,P,e) " + %D(log y)? (2.2.12)
.006x

_ T e -1
< (14+21x107°) (1—-D=e5W) " + gy

evlogy

We have verified that (1 — D%¢°®))~1 is decreasing in y, and that at y = 500,000 it

is smaller than 1.057. Thus, (2.2.12) implies that

1.057z  .006x  .5995x
+ < .
evlogy  logy logy

(z,y) < (1+21x107°)

This concludes the case of u > 7.5.
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2.2.4. The Case 2 < u < 3: Analytic Methods

In this section we prove that ®(x,y) < .575x/logy when u € [2,3), that is, when
y? < x < 1, subject to the constraint y > 241.

For small values of y, we calculate the maximum of ®(x,y)/(x/logy) for y* < z <
y? directly, as we did in Section 2.2.2 when we checked below the  bounds in Table
2.1 and the bound 3 x 107. We have done this for 241 < y < 1100, and in this range
we have

O(z,y) < .56404%, P <z <y 241 <y < 1100.
0g Y

Suppose now that y > 1100 and 3% < z < y®. We have
O(r,y) =m(x)—7w(y)+1+ »_ (r(x/p)—7(p)+1). (2.2.13)

Indeed, if n is counted by ®(z,y), then n has at most 2 prime factors (counted with
multiplicity), so n = 1, n is a prime in (y,z| or n = pq, where p, ¢ are primes with

y<p<gqg<uz/p
Let p; denote the jth prime. Note that

1 1
ZW(P) = Z J= §7T(t)2 + §7T(t)-
p<t J<m(t)
Thus,
1 1 1 1
Z (m(p) —1) = §7T(l‘1/2)2 - Qﬂ(xm) - 577(9)2 + 57(9)7
y<p<zl/?
and so
O(x,y) = () — M(z,y)+ D> w(z/p), (2.2.14)
y<p<azl/?
where
R IRV IO ST N 5, 3 B
M(z,y) s= Sr(a /) = Sa(’?) = Sn(y)® + Saly) — 1
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We use Lemma 2.2.1 on various terms in (2.2.14). In particular, we have (assuming

y >5)
O(r,y) < (14 f)li@) + 3 (1+ o)lila/p) — M(z, ). (2.2.15)
y<p<z'/?

Via partial summation, we have

> lix/p) = 2Pl ) 1

y<p<zl/2 y<p<azl/?

_ /y o (li(:c/t) — logx(i t/t)) 3 %dt.

y<p<t

(2.2.16)

For 1100 < ¢t < 10* we have checked numerically using Mathematica that

1
0<> ——loglogt— B < .00624,

p<t

where B = .261497 ... is the Meissel-Mertens constant. Further, for 10* <t < 109,

1
0< Z— —loglogt — B < .00161.

p<t

(The lower bounds here follow as well from [50, Theorem 20].) It thus follows for
1100 < y < 10* that

1 log(z'/?) 1 log
- <log —— + 54, ->lo — by, 2.2.17
> ANVE> . e

& logy
y<p<zl/2 y<p<t

where ; = .00624. Now suppose that y > 10*. Using [17, Eq. (5.7)] and the value
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2.2 THE 0.6 INEQUALITY

4.4916 for “ng” from [6, Table 15], we have that

1
Z— —loglogt — B

p<t

< 1.9036/(log t)®, t > 10°,

Thus, (2.2.17) continues to hold for y > 10* with .00624 improved to .00322. We thus
have from (2.2.16)

og(z1/?
Z ll(I/p) < 1’1/2 11(.1’1/2) <logw + 51)

lo
y<p<z'/? &Y

_ /;"1/2 <1i(x/t) - 1ogx(/xt/t)> <log 11252 _ 51) i

Let R(t) = (14 Bo)li(t)/(t/logt), so that R(t) — 1+ [y as t — oo. We write the

(2.2.18)

first term on the right side of (2.2.15) as

T Riz) = R(y") =z

ulogy  u logy’

and note that the first term on the right of (2.2.18) is less than

T

Ry~ (og(u/2) + i) o

For the expression im(z'/?)? — ix(2'/2) in M(z,y) we use the inequality m(t) >
t/logt+t/(logt)? when t > 599, which follows from [2, Lemma 3.4] and a calculation
(also see [17, Corollary 5.2]). Further, we use n(y) < R(y)y/logy for the rest of
M(z,y).

For 1100 < y < 10%, we take 3; = .00624. Using these estimates and numerical

integration for the integral in (2.2.18) we find that

B(z,y) < HTH——, 1100 <y <10, 2 <z <’
log y
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2.2 THE 0.6 INEQUALITY

For y > 10%, we take 3; = .00322. Observe that

li(t) t N t N 2t +6/t dv - t N t N 2t
1 =
logt  log®t log®t o (logv)t ™ logt log’t log’t

for ¢t > 28.5. Applying this inequality and (2.2.17) to the integral in (2.2.16), we see

that this integral is bounded below by
1/2 1/2

’ x/t logt /x x/t < logt >
1 ) da+2 | —L (1 _8) dt.
/y log?(x/t) (Og logy 61) ,  log’(z/t) o8 logy b
(2.2.19)

Since
1/2

(2 1 T
" \u u—1)logy’

t=y

1/2 T

x x/t B T
é (og(z/0)2 ¥ = Tog(a/D)

and

1/2 z1/2

/ x/t log logt P 1 1 logt N 1 log log(z/t)
, (log log

(z/1))2 log y (x/t) ©8 logy logx logt —
(s _legtu= 1y =
u/2 u logy

by partial integration, the first integral in (2.2.19) is equal to A(u)x/logy, where

Alu) = log(u/2) _loglu—1) _ o <2 R )

u/2 u u u—1

Similarly, we observe that

21/2

B 4 1 T
@ (u—1)2) 2log’y
t=y

1/2

’ z/t _ T
L (og(@/07 ¥ = 20g2(@/t)
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and that

log(x/t))?
21/2
x 1 logt 1 log(x/t) 1
2 <log2(m/t) o8 logy  log’x o8 logt (log x)(log(z/t)) .
=y
4 u  log(u—1)+2 1 x
—(Z10g= — :
(u2 i) u? * u(u — 1)) 21og?y
Hence, the second integral in (2.2.19) is equal to B(u)z/(2log®y), where
4 u  log(u—1)+2 1 4 1
B(u) = — log = — (Ao ),
() w? 82 u? + u(u —1) b <u2 (u— 1)2)

Using these identities for the integrals in (2.2.19) and estimating the other terms as

before, we verify that

T
logy

O(x,y) < .572 ,oy> 100 P <ax<yp

2.2.5. Iteration and Completion of the Proof of Theorem 2.1.1

Suppose k is a positive integer and we have shown that

O(z,y) < ¢ (2.2.20)

log y

for all y > 241 and u = logx/logy € [2,k). We can try to find some ¢;;1 not much

larger than ¢ such that

x
P <
(I7y> = Ck+110gy
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2.2 THE 0.6 INEQUALITY

for y > 241 and u < k + 1. We start with c3, which by the results of the previous
section we can take as .56404 when 241 < y < 1100 and as .575 when y > 1100. In
this section we attempt to find ¢, for £ < 8 such that c¢g < .6. It would then follow
from Section 2.2.3 that ®(z,y) < .6x/logy for all uw > 2 and y > 241.

Suppose that (2.2.20) holds and that ¥ is such that ='/*+) < ¢ < /¥, We have

O(x,y) = D(x, 2" )+ > (z/p,p ), (2.2.21)
y<p<al/k
where p~ can be taken to be any real number in (p — 1, p). Indeed the sum counts all
n <  with least prime factor p € (y, #'/*], and ®(z, z'/*) counts all n < z with least
prime factor > z'/*. As we have seen, it suffices to deal with the case when y = ¢,
for some prime gq.

Note that if (2.2.20) holds, then it also holds for y = z'/*. Indeed, if y is a prime,
then ®(x,y) = ®(x,y+e¢) for all 0 < € < 1, and in this case ®(x,y) < cpx/log(y +¢€),
by hypothesis. Letting ¢ — 0 shows we have ®(z,y) < cpz/logy as well. If y is not
prime, then for all sufficiently small € > 0, we again have ®(z,y) = ®(x,y + €) and
the same proof works.

Thus, we have (2.2.20) holding for all of the terms on the right side of (2.2.21).

This implies that

@(m,qo)ﬁckx<m+ > ! ) (2.2.22)

qo<p<zl/k P 1ng

We expect that the parenthetical expression here is about the same as 1/log qo, so let

us try to quantify this. Let

o) = {10g w0  log@@ ) 2 plogp 7 ==Y }
qo<p<zl/k
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2.2 THE 0.6 INEQUALITY

Let ¢, be the largest prime < 2'/* so that

—1 1 1
er(q) = max{ + + Z o <q1 < q(l)H/k}-

loggo loggqi =< plogp
It follows from (2.2.22) that

CLX
Falm)) = 5 (1 alw) s )

_ 1
(I)(l’,y) = q)(xaQO) S CkT (logqo

Note that as k grows, €x(qo) is non-increasing since the max is over a smaller set

of primes ¢;. Thus, we have the inequality

D(z,q5) < c3(1 + es(q0) log qo)’ 2t < gy < MO, (2.2.23)

logy’

Thus, we would like

c3(1 + e3(qo) log qo)° < .6 (2.2.24)

We have checked (2.2.24) numerically for primes ¢y < 1000 and it holds for go >
241.

This leaves the case of primes > 1000. We have the identity

Z 1

qo<p<q1 p IOg p
o) O / ( 1 2 )
— + + [ o + dt,
wloza)? " aoga)? ), "\ Blogrr T Eog ey

via partial summation, where 6 is again Chebyshev’s function. First assume that

q1 < 10", Then using [9, Theorem 2], we have 6(t) < ¢, so that

1 — . 1 1
Z < qo0 9(610)

plogp ~ q(logq)? ' loggy loggq:

Go<p<q1
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We also have [8], [9] that gy — 6(qy ) < 1.95,/qo, so that one can verify that

1.95
Vao(log go)?

e3(qo) <

and so (2.2.24) holds for gy > 1000. It remains to consider the cases when ¢; > 109,
which implies g¢o > 10*. Here we use |0(¢) — t|< 3.965t/(log t)?, which is from [17,
Theorem 4.2] or [6, Corollary 11.2]. This shows that (2.2.24) holds here as well,

completing the proof of Theorem 2.1.1.

— Section 2.3
Numerically Explicit Versions of de Bruijn’s

Estimate

The purpose of this section is to prove Theorem 2.1.2 and Corollary 2.1.3. The key
to the proofs is an explicit version of (1.1.7) of generic nature, which we shall develop
in Section 2.3.3. For our applications in Section 2.3.4, we shall also need numerically
explicit lower bounds for ®(x,y) for y in a suitable, wide range, which will be the

focus of Sections 2.3.1 and 2.3.2.

2.3.1. Lower Bounds for ¢(z,y)

Before moving on to the derivation of Theorem 2.1.2, we prove a clean lower bound
for ®(x,y) which is applicable in a wide range. This lower bound, which is interesting
in itself, will be used in the proof of Theorem 2.1.2 and Corollary 2.1.3 in Section
2.3.4. We start by proving the following result, which provides a numerically explicit
lower bound for the implicit constant in the error term in (1.1.4). It is worth noting
that our method can easily be adapted to yield a numerically explicit upper bound

as well.
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Proposition 2.3.1. Define A(x,y) by

B(z,y) = — (w(u)+M)

- logy logy

for2 <y < ./x. Let yo = 602. For every positive integer k > 3, we define
v = AL (yo) = inf {min(A(z,y),0):y > yo and 2 < u < k}.

Then Ay > —0.563528, Ay > —0.887161, and A, > —0.955421 for all k > 5.

Proof. Let y, 1= 2,278, 383. Suppose first that y > y; and set
1
G(v) == Z -
/v <p<\/z

for 2 < v < wu. By [17, Theorem 5.6]', we have

v C1
Gv) —log=| <
(v) —log 5| < oy

(2.3.1)

for all y > vy, where ¢; = 0.4/logy;. We shall also make use of the following inequality
[17, Corollary 5.2]%:

Z C3 Z Co
1 < < 1 2.3.2
logz( +logz> _W(z)_logz( +logz)’ (232)

n [6] it is claimed that the proof of [17, Theorem 4.2] is incorrect due to the application of an
incorrect zero density estimate of Ramafe [48, Theorem 1.1]. In a footnote on p. 2299 of the same
paper, the authors state that the bounds asserted in [17] are likely affected for this reason. However,
since they also give a correct proof of [17, Theorem 4.2] (see [6, Corollary 11.2]), one verifies easily
that the proof of [17, Theorem 5.6], which relies only on [17, Theorem 4.2], partial summation, and
numerical computation, remains valid.

2For the same reason mentioned above, it is reasonable to suspect that the bounds given in
[17, Corollary 5.2] are also affected. However, one can verify these bounds without much difficulty.
Indeed, (5.2) of [17, Corollary 5.2] is superseded by [50, Corollary 1], while (5.3) and (5.4) of [17,
Corollary 5.2] follow from [2, Lemmas 3.2-3.4] and direct calculations.
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where ¢y = 14-2.53816/log y; and ¢35 = 142 /log y;. We start with the range 2 < u < 3.

In this range, we have

O(x,y) =#{n <z: P (n) >y and Qn) <2}

=n(x) —7(y) +1+ Z Z 1

y<p<+/z p<q<z/p
m(x) —m(y) + 1+ Z n(z/p) —w(p) + 1),
y<p</z

where Q(n) denotes the total number of prime factors of n, with multiplicity counted.

Since

, 2 2 ’
y<p</x m(y)<j<m(y/xz)
we see that
7m(v/T)?  w(\x
w() —r(@) +1- 3 (m(p)— 1) > w(@) - Ty T
y<p<yz

It follows from (2.3.2) that

x 3 x Co \F
o >—1 - 1+ ——F .
() logx( +1oga:) 2log2\/§< +log\/§) 2log v/ <Z<f m(e/p)
y<p

(2.3.3)

To handle the sum in (2.3.3), we appeal to (2.3.2) again to arrive at

2wz ) (zologg(ﬁw/p)Jr 7 )

y<p<Vz y<p<+z plog”(z/p)
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By partial summation we see that

1 1 Yo 1 G(u)
Z plog(z/p) logz /2 v—1 dG(v) = logy <u —1 +

y<p<\z

SN

From (2.3.1) it follows that

G(u) > 1 logg— 012 |
u—1"u—1 2 log”y

G(v)

and
u u 1
/ o) de/ (1og9— a )dv
2 (v —1)? 2 (v—1) 2 log’y
1 v 1 1
S AT
u—1 2 5 v(v—1) log”y u—1
U U c1 1
=— log — +1 —-1)— 1-— :
u_10g2+og(u ) log2y( u—l)
Hence

Similarly, we have

2 p10g21(x/p> - logl%: /2“ (v - 1>2 4G() = loglzx ((i(f)f; +

y<p</x

By (2.3.1) we have
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G (v) v v ¢
> log = — .
Lz <v—1>3(0g2 1og2y) "

and

Since

/uLlofdv—— ! ! lo +/u L1 dv
, g e T T\ T T e ) e, 1 22/

_ 2u—1 o u+1/ 1 n 1 J
T w12 %o, \wo1 e )
__ lo u+1 log( —1)+1— !
TGO IEDE G 1
and
J A T
s (=13 2u-—-12 2
we have

-2 4
> e e (e 0+ S22 )
w—
perys Plog"(@/p) — log™x 08"y
Inserting (2.3.4) and (2.3.5) into (2.3.3) yields
20, logy 1 dcycs 8¢y 8c2
Az, y) > glu) — (2=
(z.9) 2 g(u) ulogy * uyd/? 2 Gt log?y + ulogy + u?log?y

where

glu) = 3 <log(u 4z f) |

U u—
Using Mathematica we find that Ay > —0.301223 when y > y;.
Now we proceed to bound A, for £ > 4 recursively when y > y;. Let £ > 3 be

arbitrary. It is easily seen that the following variant of Buchstab’s identity (1.1.3)
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holds for any z € [y, z]:

O(z,y) = d(x,2) + Z (x/p,p7), (2.3.6)

y<p<z
where p~ can be taken to be any real number in (p — 1,p). For 3 <k <u<k+1

and y > 1, we obtain by taking z = z'/3 that

O(x,y) = (v,2'%) + > Oa/pp). (2.3.7)

y<p<wzl/3

We have already shown that

log x A3 3z [w(3) 3AZ

P 13y > ¥ 3 _ 3 '
(2.277) log 21/3 “ log 21/3 + log 2:1/3 logy \ u * u?logy
Note that 2 < log(z/p)/log(p~) < k. Thus, we have

Pa/pp) 2 s (w (lfig-?) " 1?&3)) |

Since w(u) is continuous on [1,00), it follows from (2.3.7) and (2.3.8) that

3r [(w(3) 3A3 x log Ay
i) -1 .
(#.y) 2 10gy< u +u210gy p> plogp \*“ \logp +logp

y<p<zl/3
(2.3.9)

By partial summation we see that

1 1 7(y) “logt+ 2
Z 5 </; 5 dﬂ'(t):— 5 +/y mﬂ'(t)dt,

y<p<x1/3plog P tlog“t ylog®y
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which, by (2.3.2), is

oo logt + 2
) L[ et <1+ ) dt
logy , tlog't logt

= <1+ >+ L jot2, o
log logy 2log’y  3log’y  2log'y
1
2
1
2

Yy
cg 1 Co 1
NCEONSNCRS
log*y ( 3 10gy 2 10g2y)
LG
log Y 3 logy
Hence
A A 1 1
P e (— +(2-1) ) . (2.3.10)
y<p§x1/3plog p~ logy \ 2 3 logy

On the other hand, we have

3 ! w<10g$—1> 10;5/“ w(v — 1) dG(v)

yvzmya Plogp - \logp
1 u u
= oz 2 (/3 w(v — 1)dv+/ vw(v—1)d (G(v) — logg>) :

Observe that

/3uw(v — 1) dv = uw(u) — 3w(3)

and that

/u vw(v —1)d <G(v) — log g) =uw(u —1) (G(v) — log g) — 3w(2) (G(3) — log g)

_ /u (G(v) —log g) d(vw(v —1)).

By [56, (6.23), p. 562] and [56, Theorems II1.5.7 & II1.6.6], we have, for all v > 3,
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that
d%(w(u—n):w(v—2)+w'(v—1) Z%—p(v—l) 2%—/)(2) :10g2—%,
i(vw(v —1)<1+plv—1)<1+p(2)=2-—1log?2,

dv

where p is the Dickman-de Bruijn function defined to be the unique continuous solu-
tion to the delay differential equation tp'(t) + p(t — 1) = 0 for t > 1, subject to the

initial value condition p(t) = 1 for 0 < ¢t < 1. Moreover, we have

lim L (oo — 1)) = Tim (w(v —2) + (v — 1)) = —}l.

v—3~ AV v—37

It follows by (2.3.1) that

/u (G(v) — log %) d(vw(v — 1)) < : D (uw(u—1) — 3w(2)).

0g' Yy

Thus we have

' 2 1) 2eM
/ vwo(v—1)d (G(v) — log E) > wa(g ) > c1 20u7
2 log™y log”y

where M, = 0.5671432.... Hence we have shown that

> o= <10g$ 1>> & (w(u)—gwf) 201M°). (2.3.11)

w —_ _
plogp \logp ~ logy log” y

y<p<zl/3

Combining (2.3.9), (2.3.10) and (2.3.11), we deduce that

Az, y) > 9523 + A2—’“ - lo;y (201M0 - (% _ 1) A,;)
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for k <u <k + 1. Therefore, A, > min(A,, a, ) for all k > 3, where

_ 9A7 N Ay 1
k2 2 log 11

ay : - max <2clM0 — (% — 1) A,;,O) )

Consequently, we have A; > —0.451835 and A, > —0.480075 for all £ > 5.

Suppose now that 602 < y < y;. By [50, Theorem 20] we can replace (2.3.1) with

v d1
Gv) —log—=| < ,
) 2 \/glogy

where d; = 2. Moreover, (2.3.2) remains true if we replace ¢y and c3 by dy = 1.2762
and d3 = 1, respectively, according to [17, Corollary 5.2]. With these changes, we run

the same argument used to handle the case y > y; and get

Az, y) > g(u) —

——(2-ds+ +
uyy ouyt? o u? s Vylogy  wlogy  w?log’y

when 2 < ¢ < 3 and

A AL 1 [2d; Myl d
Aw,y) > 252 4 2k iMology _ (dy 13 \-
u? 2 log y VY 3

when 3 < k <wu < k+ 1, so that we can take

Ar A7 1 2d, My 1
a,::923+_k_ .max(w_(@_l)A];Q),
k 2 log o /Yo 3

As a consequence, we have Ay > —0.563528, A, > —0.887161 and A, > —0.955421

for all £ > 5. This completes the proof of the proposition. n
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2.3.2. The Inequality ®(x,y) > 0.4x/logy

Proposition 2.3.1 allows us to show that the clean inequality ®(x,y) > 0.4z/logy
holds for all 7 <y < 22/3. In addition to Proposition 2.3.1, we also need a numerical

lower bound for w(u) on [3,00).
Lemma 2.3.2. We have w(u) > 0.549307 for all u > 3.

Proof. Consider first the case u € [3,4]. Since (tw(t)) = w(t — 1) for t > 2 and

w(t) = (log(t — 1) + 1)/t for t € [2,3], we have

1 “log(t —2)+1
w(u)zz(logZ—i-l—i-/3 %dt)

for u € [3,4]. Note that uw'(u) = w(u — 1) —w(u) = S(u)/u, where

S(u) = u(log(u —2) + 1) _10g2_1_/" 10g(t_2)+1dt.

u—1 t—1
Since
§'(u) = - ! 1 (log(u 2414 “(log(z: f) D (log(u—2) + 1))
_ u(l — (u — 2)log(u — 2))
(u—2)(u—1)2 ’

we know that S(u) is strictly increasing on [3,u;] and strictly decreasing on [uq, 4],
where u; = 3.7632228... is the unique solution to the equation (u — 2)log(u —2) = 1.
But S(3) =1/2 —1log2 < 0 and

dt > 0.

log2 +1 4] —2)+1
3(4):og + _/3 og(t —2)+

3 t—1

It follows that S(u) has a unique zero uy € [3,4]. The numerical value of uy is given

by uy = 3.4697488..., according to Mathematica. Hence S(u) < 0 for u € [3,us)
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and S(u) > 0 for u € (ug,4]. The same is true for w'(u), which implies that w(u) is
strictly decreasing on [3, us] and strictly increasing on [us, 4]. Thus, w(u) > w(ug) =
0.5608228... for u € [3,4].

Consider now the case u € [4,00). It is known [36] that w(t) satisfies

p(t —1)

w(t) — e =

for all t > 1. Since p(t) is strictly decreasing on [4, 00), we have w(u) > e~ — p(3)/4
for all u > 4. To find the value of p(3), we use tp'(t) + p(t — 1) = 0 for ¢ > 1 and

p(t) =1—logt for t € [1,2] to obtain

“1—log(t—1
) =1 gz [ LMD,

2

for u € [2,3]. It follows that

1 51 —log(t—1
wu) > e =5 (1 —log2 — / % dt> = 0.5493073...
2

for all u > 4. We have therefore shown that w(u) > 0.549307 for all u > 3. O
We are now ready to prove the asserted inequality ®(z,y) > 0.4z /logy.
Theorem 2.3.3. We have ®(x,y) > 0.4z /logy for all 7 <y < x2/3.

Proof. In the range max(7,2%°) < y < 2?3, we have trivially ®(z,y) > 7(z) —7(y) +

1. By [17, Corollary 5.2] we have

x 1 Y 1.2762

— > 1 — 1
mw) = 7(y) 2 log x ( + 10gw> logy ( + logy )
1 1 1.2762
L. Y[y . 762u x
U log x x log x logy

2 1 1 3.1905 x x
> 1+— | ——= (1 > 0.4

(5 < * logx) z1/3 ( - log = )) logy logy
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whenever x > 41,217. Furthermore, we have verified ®(z,y) > 0.4z /log y for max(7, 2%/°) <
y < 2?3 with 2 < 41,217 using Mathematica. Hence, ®(z,y) > 0.4z /logy holds in
the range max(7,2%°) <y < 2%/3.

Consider now the case max(z'/3,7) < y < 2?/°. Following the proof of Proposition

2.3.1, we have

O(x,y) =m(z) —7w(y) +1+ > (7(x/p) —7(p) + 1)

y<p<yz
=m(x) - M(z,y)+ Y w(z/p). (2.3.12)

y<p<z!/?

where
1 2 1 1 3
M(x,y) = 37 (Vo) - 37 (V) - §7r(y)2 + §7T(y) —1.
To handle the sum in (2.3.12), we appeal to Theorem 5 and its corollary from [50] to
arrive at
1 1 33
G(v) — log 2o >

2 2log” \/z B log?y — _25log2y
in the range max(z'/3,7) <y < %5. By [50, Corollary 1] we have

u

1 T v
Z m(@/p) > @ Z plog(x/p) - log /2_ v—1 dG(v),

y<p<zl/? y<p<wzl/?

provided that x > 289. The right-hand side of the above can be estimated in the

same way as in the proof of Proposition 2.3.1, so we obtain

> wlx/p) >

y<p<VzT

x 66 x
w(u) — — | — :
logy 25ulog”y log
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On the other hand, we see by [17, Corollary 5.2] and [50, Corollary 2] that

1 2 T 1 25x T 17z
-M > — = > 1 — = - .
) = M) > 7o) = 57 (V) 2 o (14 o) = s = o~ s
for z > 1142, Collecting the estimates above and using the inequality w(u) >

w(5/2) = 2(In(3/2) + 1)/5 for u € [5/2, 3], we find that

w(b/2)x 1Tz 66 S w(b/2)x 17x 132z 0.4_F

O(x,y) > — - - - > U.
(z.9) logy  Slog’z 25ulog’y — logy  50log’y 125log’y logy

for all max(46,z'/%) < y < 2?/°. For 2'/? < y < 2% with 7 < y < 46, we have
verified the inequality ®(z,y) > 0.4z /logy directly through numerical computation.
Next, we consider the range 7 < y < 2'/3. By Proposition 2.3.1 and Lemma 2.3.2

we have
x

logy

O(z,y) >

055421
(0.549307 - %) > 042

logy logy’

provided that y > 602. To deal with the range 7 < y < min(z'/3,602), we follow
the inclusion-exclusion technique used in Section 2.2.2. For any integer n > 1, let
v(n) denote the number of distinct prime factors of n as before. We start by “pre-
sieving” with the primes 2, 3, and 5: for any z > 1 the number of integers n < x
with ged(n,30) = 1is (4/15)z + r,, where |r,|< 14/15. Let Ps(y) be the product of

the primes in (5,y]. Then we have by the Bonferroni inequalities that

O(z,y) > Z p(d) (% . 3 + Tx/d) > a(y)zr — b(y),

d|Ps(y)
v(d)<3

20
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where

15 d|Ps5(y) 15 J=0 d|Ps5(y)
v(d)<3 v(d)=j
3
14 (y) —3
b(y) ==
1 = J

By Newton’s identities, the inner sum in the definition of a(y) can be represented
in terms of the power sums of 1/p over all primes 5 < p < y. Thus, we have
O (z,y) > 0.4z /logy whenever a(y) > 0.4/logy and x > b(y)/(a(y)—0.4/logy). Using
Mathematica, we find that the inequality ®(z,y) > 0.4z /logy holds for 7 <y < 602
and z > 13,160,748. Finally, we have verified the inequality ®(x,y) > 0.4z /logy
directly for 7 < y < 2/ with z < 13,160,748 by numerical calculations, completing

the proof of our theorem. O

Remark 2.3.1. Note that for y € [5,7) we have

provided that x > 52. Combined with Theorem 2.3.3 and numerical examination of

the case 11 < x < 52, this implies that the inequality ®(z,y) > 0.4z /logy holds in

2/3

the slightly larger range 5 < y < x*/° if one assumes x > 41.

2.3.3. The General Approach

To prove Theorem 2.1.2, we shall first develop an explicit version of (1.1.7) with a
general R(y), following [10], where R(y) is a positive decreasing function satisfying

the same conditions described in the introduction. Suppose that y, > 3. For each

o1
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z > 2, put

w-1(-Y)

p<z

We start by estimating Q(y) for y > yo. Using a Stieltjes integral, we may write

Q) _ Zo —t! i Zo —t71) d(n(y) — li
logm—/ylg(l ¢ )dl(y)+/ylg(1 £ dn(y) — (1),  (23.13)

where z > y > y9. The first integral on the right-hand side of the above is equal to

dt
logt

z o ﬂ__ log =z /Z 1 o1
/ylog(l t )1Ogt_ loglogy—I— i (t" +log (1 —t71))

Since

1
<t gl (1t <0
26(t — 1) +log ( )

for all ¢t > 1y, we have

1~ at . iy dt
_§/y —t(t—l)logt</y (7 log (1= 7)) {5 <0

But a change of variable shows that

/°° dt _/00 at 1 /w@_ 1
, t(t—1)logt L tlyt—=1) Ty—1J), 2 y-1

where we have used the inequality y* — 1 > (y — 1)t for t > 1 and y > yo. It follows

that

N log 2z
< / log (1 —t7") dli(y) + log
v logy

=T <0. (2.3.14)
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Now we estimate the second integral on the right-hand side of (2.3.13). By (1.1.5)

and partial integration we have

-1 -1 Zz

/Z log (1 — t_l) d(m(y) — li(t))‘ <log (1 - y_l) %R(y) + log (1 — z_l)

* (1) ~ i(t)
+/y i ) dt.

t—1

log =z

Using (1.1.6) we see that
“m () — L) Co(yo)yo
————dt < ————R(y).
/y tt—1) = g1 (v)

It is clear that the function

[e.e]

ST t - 1 t"
log(l t) logt_logtzn+1

n=0

is strictly decreasing for ¢ € (1,00). Since R(t) is decreasing on [y, 00), we find that

/y Tlog (1— 1) d(m(y) li(t))l < (2 log (1 —y5") ™" 10??,0 + C;)O(?/_O)fo) R(y).

Combining this inequality with (2.3.13) and (2.3.14) yields

1
Q) | loaz

—Ca(yo) R(y) < log Qy) log y

< Ci(yo)R(y) (2.3.15)

for z > y > vy, where

-1 Yo Co(?/o)yo
logyo  wo—1"~

Ca(yo) = Cilyo) + o m'

Ci(yo) =2log (1 —y5")

93
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Exponentiating (2.3.15) we obtain

Q(z)log z

m — 1< Cs(yo)R(y) (2.3.16)

—Calyo) R(y) <

for z > y > vy, where

exp(C1(yo)R(t)) =1  exp(Ci(yo) R(yo)) — 1

B )

As a consequence, we have by letting z — oo in (2.3.16) and using the fact that

Q(2)logz — e™7 as z — oo, that

e”logy(1 — Ca(yo) R(y)) < @ < evlogy(1 + Cs(yo) R(y))- (2.3.17)

Similarly, we derive from (2.3.15) that

(= Gl AW < QW) <

< logy(l + Cs(yo)R(y)) (2.3.18)

for y > yg, where

exp(Ca(yo)R(t)) — 1 _ exp(Ca(yo) R(yo)) — 1

N A Rw)
Cﬁ(yo) _ tS;lyp 1 - eXp(_Rf;I;yO)R(t)) — Cl(yO)-

For x > y > 2, we define

_ O(x,y)
Vo) = rQ(y)

We then need to estimate n(z,y) = ¥(x,y) — AM(z,y), where A(z,y) = €7, (u) logy.

For 1 < u < 2 this can be done straightforward. Indeed, we have ®(z,y) = 7(z) —

o4
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m(y) + 1 and w(u) = 1/u when 1 < u < 2, so that

n(x,y) = m(@) _QT?(J%) Tl e logy/lu t 1yt dt

Note that

m(z) —7(y) —x /u T dt‘ =

1

n(z) — () —/ymk% < (10; + kéy) R(y).

From (2.3.17) it follows that |n(z,y)|< eay(u)R(y) for y > yo and w € [1,2], where

log y (logy /“ 1 > <1 - )
=—2_1(C —Z 1+ 1o t “dt | +(1+C R -+ “.
oy (u) VR(y) 5(%0) " gy ! Y ( 3(y0)R(y)) " Y

Integration by parts enables us to write

u 1 u
logy/ Tyt dt =~ — gyt +/ t 2y dt

1 u 1
for y > yo. Hence |n(z, y)|< e¥m(y)R(y) for y > yo and u € [1,2], where

1

o logt 1—u
my) = P ) + max (03(y0)]y(u) + (1 + Cs(yo) R(y)) (Z +y )> (2.3.19)

with

1 u
I(u) = " —l—/l t 2yt (2.3.20)

We remark that I, (u) is strictly decreasing on [1,2] and hence satisfies I,,(u) < 1 for

u € (1, 2], since its derivative is

“ -2, t—u
I;(u)——/lt y" " "logydt < 0.
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Thus, (2.3.19) simplifies to

logt

(y) = s 5+ Calun) + 201+ Calu) R(w)) (2:3.21)

Suppose now that y > yo and u > 2. From (2.3.6) it follows that

Y(z,y) = P(

W(x/p.p~ -% 11 (1— 1), (2.3.22)

y<p<z y<g<p q

where z > y > yo. Put h :=logz/logy > 1 and

=) - H (1 - —> (2.3.23)

y<p<y" y<q<p

for v > 1. Then we have H,(v) = 1 — Q(y")/Q(y). By partial summation, we see
that (2.3.22) becomes

b, y) = bl ") / By (")) dH, (). (2.3.24)

By (2.3.16) we have
|Hy(v) = 1+ 07! < Cr(yo) R(y),

where C7(yo) := max(C3(yo), C4(yo)). Thus, one can think of 1 — v~! as a smooth
approximation to H,(v). Since we also expect A(x,y) to be a smooth approximation

to ¥(x,y), in view of (2.3.24) it is reasonable to expect

h
Ei(hyy,u) = Ay",y) — Ay",y")h! —/ Ay y w2 do
1

to be small in size as a function of y. This can be easily verified when 1 < h < u/2.

o6
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Following de Bruijn [10], we have

9 — 9 u - u - u—
By u) = b7t Ay y") + T y) = RA T ). (2:3.25)
oh oh
Since
)\(yuayh) /U/h ht—
——==h Yw(t)dt
evlogy 1 yrw() dt,
we find
a )‘(yu’yh> _ u/h ht—u u/h ht—u —2 -1
o <m _/1 Yy w(t) dt+h logy/1 Yy (tw(t)) dt — uh"w(uh ™) | .

Recall that (tw(t))’ = w(t — 1) for t € R with the obvious extension w(t) = 0 for

t < 1. It follows that

- hl/ yMrwo(t — 1) dt
1

u/h
log y / Y (teo(8)) dt = By (1)
1 1

u/h—1
= uh2w(uh™') — K lyhv — h_lyh/ Y Tuw(t) dt
1

_ uthW(uhfl) . hflyhfu . (h2€fy lOg y)—l )\(yufh’ yh)

Hence we have

0 u u/h —u —u — u—
o\ y") =€ logy (/ yM W (t) dt — " > — Ay ")
1

=h ' A(y", ") — ey logy — KA T M.

Inserting this in (2.3.25) yields

0
—_Ey(h: — h eyt logy.
h 1(h;y,u) = h™ ey “logy
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Integrating both sides with respect to h and using the initial value condition E;(1;y,u) =
0, we obtain

h
Ei(h;y,u) =€” logy/ Tyt dt < ey (2.3.26)
1

In what follows, we shall always suppose that 1 < h < u/2. Following de Bruijn

[10], we proceed to show that
h
Balliy ) == A"s) = A" o)L~ HO) — [ A 0) dH ()
1
is small in size as a function of y. This is intuitive, because
h
/\(yu7 yh)h—l o / /\<yu—v7 yv)v—Q d’U,
1

which is a good approximation to A(y“,y) as we have already demonstrated, can be

thought of as a smooth approximation to
h
N o)1= H) = [ A ) dH )
1

Moreover, we have by (2.3.24) that

h

) =0l )0 = By (0) + [l ) dH () — Es(hip), (2327)
1

which will later be used to estimate n(z,y). To estimate Es(h;y,u), let us write

E3(h;y,u) = Ei(h;y,u) + Ey(h;y, u), where
h
Es(h;y,u) == —/ Ay yY)d (H(v) -1+ vil) + (H(h) -1+ h’l))\(y“,yh).
1

Then we expect Ey(h;y,u) to be small in size as a function of y. Using (2.3.23) and

o8
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the observation that H(1) = 0, we have

— h 6 U—7v v
| By (hsy,u)|< (1A<y“,yh) — Ay )| +/ AR dv) Cr(yo) R(y).
1
(2.3.28)
Note that
)\<yu’yh) ht u u/h ht—u
e logy / t)dt — /2 YT w(t — 1) dt

/ Yy dt+/2u/hyht_“(w(t)—w(t—1))dt
-/

By Theorems II1.5.7 and I11.6.6 in [56] we have

u/h
t M dt — / YT (t) dt.
2

W) < p(t) <

ESY (2.3.29)

for all ¢ > 1. It follows that

2 u/h
A" y") = Ay " y")| < heVlogy ( / Tyt dt / y" M p(t) di
1 2

(2.3.30)
This inequality will later be used in conjunction with the formulas
2 thfu 2
hlogy/ t iyt dt = 5~ Y / t= 2y dt (2.3.31)
1 1

29
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and
u/h

Yy (tp(t)) dt

u/h
y" ot — 1) dt.

u/h
hlog y / Yt dt = uh p(uh™ ) — 2p(2)yPh —
2

<uh™lp(uh™h) = 2p(2)y*" " +

o— o

(2.3.32)

On the other hand, we have

PN u/v
(y 7y ) — U/ yvt—uw(t _ 1) dt,
e’ logy 9

which implies that

a )\(yufv’y’u) _ ulv vt—u —1 -1
%(W _/2 y" T (1 + tuvlogy)w(t — 1) dt — uv™ w(uv 1).

By partial integration, the right side of the above is easily seen to be

u/v
— 2P / y W (t— 1) dt.
2

Hence, we arrive at

h h h  pu/v
/ dv < e"logy (2/ YU dv + / / YW (t— 1) dtdv) :
1 1 1 J2

Furthermore, we have by Fubini’s theorem that

h  pufv u/h  ph w u/t
/ / YW (1) dtdv = / / Y w (1) do dt+ / / y" Tt (t=1)] do dt,
1 J2 2 1 u/h J1

0

i VOV
5 (v y")
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the right side of which is easily seen to be

1 /u/h e ) u ) u " )
Yyt wi(t =1 dt+/ wi(t—1 dt—/y “Ylw'(t—=1)|dt ] .
1ogy(2 (=Dt [ -l [Tyl )

It follows that

r

This estimate together with (2.3.30) will lead us to a good estimate for Es(h;y, u).

0

%A(y YY)

u/h u
dv < e’ <y2h_" +/ y MW (t— 1) dt +/ w'(t —1)| dt) :
2 U

/h
(2.3.33)

Now we derive estimates for Es(h;y,u) that suit our needs. Suppose that k£ <
u < k+1 and take h = hy, = u/k, where k > 2 is a positive integer. We first consider

the case k = 2. In view of (2.3.31), we see that (2.3.30) simplifies to
1 2
M) =) < (5 [ ) =,

for y > yo (see (2.3.20) for the definition of I,,(2)). By (2.3.33) we have

h21 9 3 3eY
MYl ) do<e |1 "t —Ddt ) = =
/1 50 v_e(+/2|w( )l ) 5
since w'(t) = —1/t? for t € [1,2). Combining these estimates with (2.3.26) and

(2.3.28), we obtain Ej3(hg;y,u) < €& (yo)R(y) for y > yo and 2 < u < 3, where

o) = s+ Coln) (2043 )

Now we handle the case k > 3. From (2.3.29)-(2.3.32) it follows that

u u— 1 3\ o S
’)\(y ,yhk) —)\(y hk,yhk)‘ <er (F_/€)+ (210g2—§) s k+/1 2yt kdt

T )
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where we have used the fact that p(t) = 1—logt for ¢t € [1,2]. By (2.3.29) and (2.3.33)

we have

dv < ¢ (yz"’“ +/ y ot — +/ yF—— +/ —) .
/1 2 (t—1)2 3 ['(t) ro L(t)

Together with (2.3.26) and (2.3.28), these inequalities imply that Ej(hg;y,u) <

ek (yo)R(y) for y > yo and 3 < k < u < k + 1, where

o)+ = (g ) o0 (et [ gy (2w )t

/2 2, t—k ’ t—k ( ) 1 " tkdt
+ t "y, dt+/y <1—logt—1 +—) dt+2/y—).
1 ‘ 2 7 (t—1) 5 70 T(t)

As a direct corollary, we obtain

Yo 1 1 [ dt 1
- = — 2log2 —1

+y01y0(2)+/2 Y2 (1—10g(t—1)+(t_;1)2) dt+2/3myét}%)),

where we have applied partial summation to derive

Ii/:yék%z (i%’“) /;Oyép /SOO(Z Yo ) 0_>

k=3 3<k<t
Yo /“yt dt _/wyé 3(1—y_w Y dt
I—yo Or(t) 3 1 _?Jo I'(t)

For computational purposes, we can transform the last integral above by observing

@ dt _/ = .t
/3 O] <Z t+2)- t+2+n)>y°r(t+2)’

n:0

that

Let

(s, 2) ::/ v e do
0
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be the lower incomplete gamma function, where s € C with R(s) > 0 and z > 0. It

is well known that

S _—z

v(s,2) = 2°e ;s(s—l—l)---(s—kn)’

from which it follows that

[e.9]

t+2,1)e.
— (t+2)- t+2—|—n) =+ 2 1)e

n

Thus we obtain

ka(yo) = % max 1
P Yo — 1 t>yo tR(t)

1 [~ dt 1
- — 21og 2 — 1 + yol,, (2
+C7(yo)(6 2+/3 F(t)+y0—1( og + Yoly, (2)

+/23y3—2 (1—10g(t—1)+ (t_ll) ) dt + 2e /1 3%@)).
(2.3.34)

In Mathematica, the function v(¢ 4+ 2,1) can be evaluated by “Gammalt+2,0,1]”.

Finally, we are ready to estimate n(z,y). Let

(y) = — (e, 1)
m\y) = sup (¢,
ER(Y) welk,kt1)

t>y

for k > 1 and y > yo, where the value of 1, (y) is provided by (2.3.21). Using (2.3.27)

and the estimates for F3(hg;y,u) with y > yo and 2 < k <wu < k + 1, we find

n6(y) < Me=1(y) + &k (vo)

for all £ > 2 and y > yo, from which we derive
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for all £ > 1 and y > yo. Since n;(y) is decreasing on [yg, oc0), we have therefore

shown that

n(z,y)|< e (m(yo) + ka(yo)) R(y) (2.3.35)

k=2
for all y > yo, where the infinite sum can be evaluated using (2.3.34). To derive an
explicit version of de Bruijn’s result (1.1.7), we observe that (2.3.18), (2.3.35) and

[50, Theorem 23] imply that Q(y)|n(z,y)|< Cs(yo)R(y)/logy for all y > yo, where

Cs(yo) := B(yo) (m(yo) + ka(yo))

with

1, if 3 < yo < 10°,
B(yo) =
exp(Ca(yo)R(yo)),  if yo > 10°.

Hence, it follows that

O(x,y) — ,uy(u)e”xlogyn <1 - (2.3.36)

Py

1 Cs(yo)zR(y)
5)|< log y

for all y > yo.

2.3.4. Deduction of Theorem 2.1.2 and Corollary 2.1.3

Now we apply (2.3.36) to obtain explicit estimates for ®(x,y) with specific choices of

R(y). Unconditionally, it has been shown [43, Corollary 2] that

. p log 2
—1 < 0.2593 ——+ -
m(2) = li(2)[< 0 593(10g 2)3/4 P ( 6.315)
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for all z > 229. With yo > 229, the function

1
R(z) = 0.2593(log z)"/* exp (‘ 6O§1z>

is strictly decreasing on [yo, 00) and satisfies (1.1.5) and (1.1.6) with

16.315
=2
CO(yO) log ?/0’

since

o0 1 logt < 1 t
/Z #(log 1371 P <_ \ 6.315) dt = 2/@ Viop <_\/6.315> a
< L/OO exp <— t ) dt
(log 2)Y* [ /iog= v6.315

24/6.315 . log
= ———- X J—
log2)/4 P\ "V 6315

for z > yo. Numerical computation by Mathematica allows us to conclude that

(2, y) — py(w)e'zlogy [ | (1 _ %)

p<y

x log y
4.403611 ——— -
< A0 (log y)#t 7 ( 6.315)

(2.3.37)
for all x > y > 229. Suppose now that 2 < y < 229. Using the inequalities

O (z,y) < z/logy [27, Theorem]|, [[ ., (1 — 1/p) < e 7/logy [50, Theorem 23] and

p<y

0 < py(u) < 1/logy, we have, for all 2 <y < 229,

2z

x logy
< < 4403611 ——+ — .
logy (log )t P < 6.315)

P(z,y) — My(U)e”xlong (1 _ 1)

p<y p

Combining this with (2.3.37) proves the first half of Theorem 2.1.2.

Under the assumption of the Riemann Hypothesis, it is known [52, Corollary 1]
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that

Im(2) —li(2)|< %ﬁlog 2

for all z > 2,657. With yy = 2,657 and R(z) = log® z/(87+/2), we have

[Tl 2

for z > yo, where

Co(yo) =

> logt
$3/2

4wz

10g2 Yo

log z + 2

2(logyo + 2)

< Co(yo) R(2)

Therefore, we conclude by (2.3.36) and numerical calculations that

b(z,y) — py(w)ezlogy [ |

p<y

-3

< 0.184563

xlogy
VY

(2.3.38)

for all x > y > 2,657. The values of relevant constants are recorded in the table

below.

Table 2.2: Numerical Constants

constants unconditional estimates | conditional estimates
Yo 229 103 2,657 108
R(yo) 156576 .097363 .047992 .001351
Co(yo) 2.156096 1.171019 317985 120362
C1(yo) 2.534430 1.279593 571800 .228936
Ca(yo) 2.548436 1.279593 .D75723 .228940
C3(yo) 3.110976 1.362717 .b79718 228971
Ci(yo) 2.548436 1.279593 575723 .228940
Cs(yo) 3.131827 1.362717 583750 228975
Cs(vo) 2.534430 1.279593 571800 .228936
C7(yo) 3.110976 1.362717 .D79718 228971
Cs(yo) 16.982691 | 9.079975 | 4.638553 | 2.967998
71 (yo) 6.236726 3.628074 | 2.697198 | 2.229726
e &6(Yo 10.745960 | 4.388310 | 1.941356 | .737355

To complete the proof of the second half of Theorem 2.1.2, it remains to deal with
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the case 11 < y < 2,657. For simplicity of notation we set
. y 1
D(x,y) = ®(x,y) — py(u)e’zlogy [ (1 - )
p<y

Using Mathematica we find that

li(z) —
Mo— max DG =T s,
11<2<2657  4/zlog 2

1
m:= min €7 long <1 — —) > (.876248.
11<2<2,657 > D

Pz

If /x <y <z, then

O(z,y) = py(w)z + (v(x) —li(z)) — (7(y) = li(y)) + 1.

Note that z < y? < 10%. Since 7(2) < li(z) for 2 < 2z < 10® by [50, Theorem 16] and

1 e 7
m(-1)-
P log z

p<z

for 0 < z < 10® by [50, Theorem 23], we have

ID(z,y)| < (1—m) (1—y) @ + My/zloga + 1

< ((1—m)(1—y_1)—|—M

log? lo T
8y gy)

2.3.
N » gy’ (2.3.39)

2 00). Numerical

where we have used the fact that log 2//z is strictly decreasing on [e
computation shows that the right side of (2.3.39) is < 0.449774xlogy/,/y for 11 <

y < 2,657. Suppose now that 11 < y < y/z. By Theorem 2.1.1, Theorem 2.3.3 and
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[50, Theorem 23] we have, for 11 <y < 2,657,

D(z,y) < (06 - 5 (- v ) % < 0.4497745’51(/)%9,

1
TS _0.449774208Y
VY

D(z,y) > (0.4 — Mo)logy

This settles the case 11 < y < 2,657 and completes the proof of Theorem 2.1.2.
The proof of Corollary 2.1.3 is similar, and we shall only sketch it. When y > o,
where y, = 229 for the unconditional estimate and yy = 2,657 for the conditional

estimate, we have by the triangle inequality that

x
logy’

|D(2,y) — py(w)z| < [D(z, y)|+

1
1—6710ng (1——)
p

p<y

Then we bound |D(z,y)| using the values of Cy(yo) listed in Table 2.2. To estimate

the second term, we use (2.3.18) when y > 10® and the inequality

m(y) < ' logy | | (1 — };) <1

p<y

when yy <y < 108, where m(y) is given by

0.983296, if 229 < y < 2,657,

m(y) = ¢ 0.996426, if 2,657 < y < 210,000,

0.999643,  if 210,000 < y < 108,

\

according to [50, Theorem 23| and Mathematica. This leads to the asserted bounds
for y > yog. Suppose now that y < yo. In this case, the proof of the unconditional
bound is exactly the same as that of the unconditional bound in Theorem 2.1.2. As

for the conditional bound, we argue in the same way as in the proof of Theorem 2.1.2
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to get

log?y logy) x
O(x,y) — py(u)z|< (M +
R e e

when /z <y < x and

Y

©(z,y) — py(u)z| < <o_6 _ % (1- y1)>
logy’

logy

|@(2,y) — py(u)z| > (0.4 — My)

when 11 < y < y/x. Together, these inequalities yield the asserted conditional bound.

Remark 2.3.2. The bounds in Theorem 2.1.2 and its corrollary may be improved. For

example, the numerical values of the sum -, & (yo) may be reduced by keeping p (or

even |w'|) in all of the relevant integrals, but of course the computational complexity

is expected to increase as a cost. In addition, our method would allow an extension

of the range x > y > 11 in the second half of Theorem 2.1.2 to the entire range

x >y > 2 if we argue with yy = 2,657 replaced by some smaller value and enlarge

the constant 0.449774.
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Chapter 3

The Weighted Erdos—Kac

Theorems

In this chapter we study the distribution of additive functions weighted by nonnega-
tive multiplicative functions. The main purpose is to establish weighted versions of the
Erdos-Kac theorem by generalizing the method of moments of Granville, Soundarara-
jan, Khan, Milinovich and Subedi. Compared to previous approaches to computing
moments, this sieve-theoretic approach allows one to identify easily the main term in
the asymptotic of the mth moment and obtain asymptotic formulas uniformly in a
wide range of m. And we shall take great advantage of these benefits in our treatment
as well. As a result, we are able to obtain, without much complication, results which
are applicable to a wide class of multiplicative functions, and in particular, imply the
theorem of Elboim and Gorodetsky.

In Section 3.1, we reveal the class M* of nonnegative multiplicative functions
which we alluded to in Section 1.1 and discuss some interesting examples. In Section
3.2, we introduce additional definitions and notation and state our main results in a
coherent way. Proofs of these results will be presented in detail in Sections 3.3-3.9.

In Sections 3.10 and 3.11, respectively, we describe how Corollary 1.2.1 and 1.2.2 can
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THE WEIGHTED ERDOS—KAC THEOREMS

be derived from our results. We close this chapter with a brief discussion on related
problems and possible generalizations.

Before delving into the technical material, we introduce some commonly used
terminologies and notation in analysis and number theory that will also be adopted
throughout this chapter. Given any real or complex valued functions f(x) and g(x)
with a common domain D C R, we shall use Landau’s big-O notation f(z) = O(g(z))
or Vinogradov’s notation f(z) < g(x) to mean that there exists an absolute constant
C > 0 such that |f(x)|< Clg(z)| for all x € D. Likewise, we shall use the notation
f(z) > g(x) interchangeably with g(x) = O(f(z)) . If f(x) = O(g(x)) and g(z) =
O(f(z)) hold simultaneously, then we adopt the short-hand notation f(z) =< g(z).
If D contains a neighborhood of co and f(z)/g(z) — 0 as * — oo, then we write
f(z) = o(g(x)). Similarly, we write f(x) ~ g(z) if f(x)/g(x) — 1 as © — oco. We

shall occasionally make use of the function ¢, defined by

0, ifa=b,
€a,b =
1, otherwise,

for any a,b € R. Equivalently, €,, = 1 — d,p, wWhere d,; is the Kronecker delta
function.

Throughout, the letter p always denotes a prime, and we write 7 (z) for the prime-
counting function, namely, 7(z) = > _ 1. For any z € R, we write [z] for the
integer part of z and [x] for the least integer > x. For every n € N, we denote by
P~(n) and P*(n) the least and the greatest prime factor of n, respectively, with the
convention that P~(1) = oo and P*(1) = 1. We say that n € Z \ {0} is squareful,
square-full, or powerful if for any prime p | n, one has p? | n. Given any prime power
p¥, the relation p” || n means that p” | n but p** ¥ n. Thus n is squarefree if every

prime divisor p of n satisfies p || n. In addition, we denote by R, the radical or
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3.1 THE CLASS M*

squarefree kernel of n, i.e.,

Finally, we write

( m > _ m!
My eeny Mg mq!---my!

for the multinomial coefficient of shape (my,...,my) of size m = my + - - - + my,.

Section 3.1
The Class M*

The weight functions a: N — R that we shall consider throughout the chapter form
a nice subclass M* of nonnegative multiplicative functions, nice in the sense that
there exist absolute constants Ay, 3,00 > 0, Uy > 0, g9 € [0,1) and r € (0,1), such

that the following conditions hold:

(i) a(p’) < pleoto=b, (3.1.1)

(11> Z % = ﬁﬂf -+ O (m) s (312)
’ 2 v

(i) Y <]92(%]2_1) + ; %) < o0, (3.1.3)

i) 3 va(p) _ (loglog(p + 1))%

o . , (3.1.4)

where the restricted sum Z;) is over all but finitely many primes p. Note that
due to the restricted sum in condition (iii), we can ignore the primes for which
> o (p”)/ prto0=v = oo, Tt is not hard to verify that M* is closed under Dirichlet
convolution. In particular, condition (ii) can be viewed as a weighted version of the

Prime Number Theorem. As we shall see in the next section, conditions (i)—(iii) en-
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able us to obtain, in general, an almost optimal estimate for the partial sum of a(n),
thanks to [11, Theorem 2.1], which is also one of the key ingredients in the argument
of Elboim and Gorodetsky [18]. Condition (iv) essentially speaks about the growth
rate of the local factors of the Dirichlet series F(s) =3 ., a(n)n™" at s = go. More

precisely, if we denote by

Flsip) =Y A0

Vs
v>0 p

the local factor of F'(s) at p, then condition (iv) is equivalent to

Fl(o0;p) _ (loglog(p + 1))%
<
log p P

Y

where F!(og;p) is the derivative of F,(s;p) with respect to s evaluated at s = oy.
Like conditions (ii) and (iii), this condition places a holistic constraint on the growth
of a(p”), and it is one of the types that we expect to hold for many multiplica-
tive functions of interest. It may be worth noting that M™* properly contains the
subclass of multiplicative functions considered by Elboim and Gorodetsky [18]. A
simple example which falls into M* but is not covered by the theorem of Elboim and
Gorodetsky is the multiplicative function a(n) defined by a(p) = 1 for all primes p
and a(p”) = p*/? for all prime powers p” with v > 2.

Some familiar multiplicative functions which belong to M* are: the power function
n*, the cth power of the x-fold divisor function d,(n)¢, the sum-of-divisors function
ox(n), Euler’s totient function o(n), the functions 2™ and &5, the characteristic
function p(n)? of square-free numbers, the function r5(n)/4, and the function which
counts the number of positive divisors of n representable as a sum of two integral
squares, where ¢ € R, A > —1, K,k > 0, kg € (0,2), p(n) is the Mobius function,
and ro(n) := #{(a,b) € Z*:n = a® + b*}.

Perhaps a less obvious example is p,(n), which denotes the number of zeros of
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3.1 THE CLASS M*

a nonconstant irreducible polynomial ¢ € Z[z] in Z/nZ. The Chinese remainder
theorem implies that p, is multiplicative. For this particular example one can take
Ay =0 =09=1,19 = 0o =0, and r € (1/2,1) to be any positive number. The
interested reader is referred to [22, Lemmas 3,7] and [33, Lemma 1] for more details.

We conclude this section with another interesting example, which arises from
the theory modular forms. Consider a(n) = 7(n)?, where 7(n) is the Ramanujan
T-function, which may be defined as the nth Fourier coefficient of the modular dis-

criminant A(z), i.e.,

A(z) :=¢q H(l e ZT(n)q”.and

n=1

Ramanujan [47] conjectured that 7(n) is multiplicative, that 7(p*™') = 7(p)r(p”) —
pr(p’~1) for all primes p and all v € N, and that |7(p)|< 2p'Y/2 for all primes
p. As he pointed out, these conjectures would imply that |7(n)|< n''/2d(n). The
first two conjectures were proved by Mordell [41] in 1917, and the third one was
proved by Deligne [16] in 1974 as a consequence of his proof of the Weil conjectures
for algebraic varieties over finite fields. In addition, it can be shown [42] that the
Dirichlet series ) -, 7(n)?n~*"" has the Hoheisel Property. We say that a Dirichlet
series F'(s) = >, -, a,n”° has the Hoheisel Property if (a) F'(s) possesses the explicit

formula

P log T'z)?
Zaplogp:x— £+O<M>7

p<s i<z ¥
where 0 < T < 4/x and the sum on the right-hand side runs over all the zeros
p=p+iyof F(s) with 8 > 0 and |y|< T, (b) F(s) has a zero-free region o >
1—co/log(|t|+2) for some absolute constant ¢y > 0, (c) the number of zeros p = f+iy
of F(s) with 8 > o and |y|< T is < T*(!=) uniformly for all 1/2 < ¢ < 1 and all

sufficiently large T', where ¢; > 0 is an absolute constant, and (d) the number of zeros
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p=p+iyof F(s)with > 0and |y|<Tis < TlogT as T — oco. In particular, (a),
(b) and (d) are sufficient for establishing the following analogue of the Prime Number

Theorem for 7(n)?/n':

Z 7'](92191)2 logp=x+0 (a: exp <_CO\/@>)

p<z
with some absolute constant ¢y > 0. From these properties of 7(n) it follows that

a(n) = 7(n)? satisfies conditions (i)—(iv) with any fixed Ay > 0, 8 = 1, g9 = 12,

Yo =0, and any fixed gy € (0,1) and r € (1/2,1).

Section 3.2
Main Results

Let a(n) be a multiplicative function in the subclass M* defined in the previous

section, and let

n<x

be the partial sum of a(n) over n < z. For any additive function f:N — R, we may

define
Az) = Aay(z) =Y alp) f;fz),
B@) = Busle) = X a2

If we model n < z by a random variable n defined on the sample space NN[1, x] having
a probability distribution with respect to the natural probability measure induced by
a, that is to say, Prob(n = k) = a(k)/S(z) for every k € NN[1, z], then one may hope

that f(n) also obeys a certain distribution law with respect to the same probability
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measure under suitable conditions. We shall show, by estimating the weighted mth

moment defined by

M (x;m) = Mo, p(x;m) := S(2)™ Y a(n)(f(n) — Ax))"

n<x

for every m € N, that for certain additive functions f, the distribution of f(n) is
approximately Gaussian with mean A(z) and variance B(z). More precisely, the
limiting distribution of the normalization (f(n) — A(x))/+/B(x) of f(n) is standard
Gaussian. To state our results in a coherent manner, we set x,, = (1 + (—1)")/2,

the characteristic function of even integers, and

m/!
O 1= 2m/2T (m /2 4+ 1)

for all m € N, where I" is the Gamma function. One quickly notes that C,,, = u,, =
(m — 1)!! for m even. Since the numbers C,, play a nonnegligible role in the error
terms of our uniform estimates for M (x;m), we find it more convenient to use C,, in

place of pi,,. Our first result is the following theorem.

Theorem 3.2.1. Let f:N — R be a strongly additive function with |f(p)|< M for all
primes p, where M > 0 is an absolute constant. Let a:N — Rs( be a multiplicative
function, and suppose that there exist absolute constants Aq, 3,00 > 0, U9 > 0, g9 €

[0,1) and r € (0,1), such that a(n) satisfies the conditions (i)—(iv).

(a) If =1 and 0 < hg < (3/2)%? is arbitrary, and if B(x) — oo as v — oo, then

m Mm?
M(z;m) = C,,B(x) 2 (Xm +0 (%))

we have

uniformly for all sufficiently large x and all 1 < m < ho(B(x)/M?)'/3.
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(b) If B8 # 1 and if B(z)/(logloglogz)* — 0o as © — 0o, then we have

Mm3 log log log x
B(x)

M(z;m) = Cp,B(z)? (Xm +0 (

uniformly for all sufficiently large x and all 1 < m < B(z)'?/(loglog log x)%/3.

The implicit constants in the error terms of both asymptotic formulas above depend

at most on the explicit and implicit constants in the hypotheses except for M.

Remark 3.2.1. It may be worth pointing out that as in Theorem 3.2.1, the implicit
constants in the estimates appearing in the rest of the paper depend at most on the

explicit and implicit constants in the hypotheses unless stated otherwise.

In the case where a(n) = 1 and f(n) = w(n), we recover [30, Theorem 1] with a
slightly more flexible range 1 < m < hg(loglog x)/? compared to the original range
1 < m < (loglogz)'/3. Though Theorem 3.2.1 is formulated for strongly additive
functions, similar things can be said about the additive functions whose values at
prime powers do not grow too fast and are hence not expected to contribute very
much. A simple example of such functions is (n). Since Q(p”) = v for all p”, one
can show, by establishing (1.2.2), that {2(n) does not differ from its cousin w(n) very
much for “most” values of n, and so they are expected to have the same distribution.
More generally, we shall prove the following variant of Theorem 3.2.1 for additive
functions. For simplicity’s sake, we shall focus on a subclass of the multiplicative

functions in M*.

Theorem 3.2.2. Let f:N — R be an additive function such that f(p¥) = O(v")
for all prime powers p”, where Kk > 0 is an absolute constant. Let a: N — R>¢ be a
multiplicative function, and suppose that there exist absolute constants Ay, 8,00 > 0,
Yo >0, 00 € [0,1/2) and X € (0,2'7220) such that (n) satisfies (3.1.2), (3.1.4), and

the condition that a(p”) = O((Ap® TN for all prime powers p*.

7



3.2 MAIN RESULTS

(a) If =1 and 0 < hy < (3/2)%? is arbitrary, and if B(x) — oo as x — oo, then

m Mmrﬁ-%
M(z;m) = C,,B(x)>2 (Xm +0 (W))

we have

uniformly for all sufficiently large x and allm € N satisfyingm < ho(B(x)/M?)'/?
and m < B(z)Y @3 where M > 0 is an absolute constant for which | f(p)|<

M holds for all primes p.

(b) If B8 # 1 and if B(z)/(logloglogx)? — oo as x — oo, then we have

L m Mms (logloglog z + m*)
M(xz;m) = C,,,B(z) (Xm +0 < 500 >>

uniformly for all sufficiently large x and all

B(z)Y?

1< in ( B(x)"/ ) .

< m < min ( (x) ' Tloglog log 7)2/3

The implicit constants in the error terms of both asymptotic formulas above depend

at most on the explicit and implicit constants in the hypotheses except for M.

Theorem 3.2.2 clearly implies the first part of [18, Theorem 1.1] if we set f(n) =
Qn), K = 1, and Jg = go = 0. It is easy to see that if a(p”) = O((A\protoo—1)¥)
for all prime powers p”, where oy > 0, 79 € [0,1/2) and A € (0,2'7%7) are abso-
lute constants, then conditions (i) and (iii) are automatically fulfilled with any fixed
max(ro + logy A, 0) < gg < 1, 79 + max(1/2,log, A) < r < 1, and of course the same
parameter oy. Indeed, we shall derive Theorem 3.2.2 as a corollary of Theorem 3.2.1.

Let g € Z[z] be a nonconstant irreducible polynomial. As in Section 3.1, let p,(n)
denote the number of zeros of ¢g in Z/nZ. More generally, if g € Q[z] is a nonconstant
irreducible polynomial, we may extend the definition above by setting p,(n) = 0 if

ged(n, ¢y) > 1, where ¢, € N is the least positive integer such that c,g(z) € Zz],
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and insisting that py(n) be the number of zeros of g(x) (or equivalently, ¢,g(z)) in
Z/nZ when ged(n,c,) = 1. Extended this way with the convention that p,(1) = 1,
the function p,(n) is still a multiplicative function of n. It is known [33, Lemma 1]

that p, is bounded on prime powers and that

1
Zpg loglogx+Mpg+O( >
log

p<lz

Given a strongly additive function f:N — R, we define

f f(p)
Apg(x Z Pg(p p
p<x
f I(p)?
By ( Z Pg(p D
p<x

For simplicity’s sake, suppose that g(N) C N. In the case g € Z[z], Halberstam [32,
Theorem 3] showed that if Byy(z) — oo as © — oo, and if f(p) = o (1/Byy(p))",

then

vf3

- Z — Ay (@)™ = (ftm + (1)) Bry()

n<z

for every fixed m € N. Under the stronger condition f(p) = O(1), Theorem 3.2.1
leads to a weighted version of this result in the case g(n) = n. As for the remaining

cases we have the following theorem.

Theorem 3.2.3. Let f:N — R be a strongly additive function with |f(p)|< M for

all primes p, where M > 0 is an absolute constant, and let g € Q[x] be a nonconstant

'Halberstam [32] wrote that for g(z) = x this pair of conditions contain the condition that f(p) =
o((logp)€) for every given € > 0. However, this claim is incorrect, as noted by Prof. Pomerance. In
fact, a simple counterexample may be constructed as follows. Let P be an arbitrary infinite subset of
odd primes such that } 5 1/p < 0o, and put P(z) := PN[3,z]. Define f(p) = v/loglogp for p € P
and f(p) = 1 for p ¢ P. From partial summation it follows that }_ p,) f(p V2 /p = o(log log ).
Then one sees readily that f(p) = o((logp)®) for any given € > 0, while f(p) ~ +/B(p) for large
peP.
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irreducible polynomial such that g(0) # 0 and g(N) C N. Let :N — R be a
multiplicative function, and suppose that there exist absolute constants Ay, 3,00 > 0,
Yo >0, oo € [0,1) and r € (0,1), such that a(n) satisfies the conditions (i)—(iv).
Furthermore, suppose that there exists an absolute constant By > 0 and a function

d(z) € (0,1], such that

Amga)= S am)-— 3 a(m:o(%) (3.2.1)

n<lx n<lx
n=a (mod q) ged(n,g)=1

uniformly for all sufficiently large x, all ¢ € NN [1,2°®)], and all a € Z coprime to q.

If 0 < hg < (3/2)%3 is arbitrary, and if 6(x)?By4(x) — 00 as x — 0o, then we have

S() ™ 3 aln) (f(g(n) = Agg(@)" = G By () (Xm e <5<x> Bf,g<x>)>

n<x

uniformly for all sufficiently large x and allm € N satisfying 1 < m < ho(By 4(z)/M?)'/3
and m < (6(x)%By4(x))Y?, where the implicit constant in the error term depends at

most on the explicit and implicit constants in the hypotheses except for M.

Roughly speaking, (3.2.1) can be viewed as a condition of the Siegel-Walfisz
type which ensures that «(n) is well distributed among the reduced residue classes
a (mod q) for all ¢ in a reasonably wide range. A classical example of a(n) that sat-
isfies all of the conditions in Theorem 3.2.3 is di(n), where k € N. In this case it is
known [5, 44] that one can actually take d(x) to be a constant depending on k and
An(m5q,a) = O(x'¢/p(q)) for some constant € € (0,1). Anther interesting example
is 79(n)/4 for which one may take 6(x) = 2/3 — € and any fixed By > 0 [5].

We shall only sketch the proof of Theorem 3.2.3, since it is similar to, and in fact,
much easier than that of Theorem 3.2.1. The argument used in the proof may also

be modified to study the joint distribution of f(n + hy) and f(n + hy) with any fixed

80



3.2 MAIN RESULTS

integers hy # ho.

It is not hard to see that the condition f(p) = O(1) in Theorem 3.2.1 can be
relaxed, especially when we do not pursue uniformity in m in the asymptotics for the
mth moment. For instance, in the case a(n) = 1 Delange and Halberstam showed

[15, Theorem 1] that if f:N — R is a strongly additive function such that B(z) — oo
as x — 00, f(p) = O(+4/B(p)) for all primes p, and

3 foF _ o(B(z)) (3.2.2)

p<w

|f(p)[>er/ B()

for any given € > 0, then

S () — A@)™ = (i 4 0(1) B(2) E

n<x

for every fixed m € N. This result implies at once the Kubilius-Shapiro theorem [54,
Theorem A] under the additional assumption f(p) = O(1/B(p)). On the other hand,
Delange and Halberstam noted that their result no longer holds if this additional
assumption is removed, which incidentally exposes the limitation of the method of
moments compared to the method evolved by Erdés and Kac. Nevertheless, it will be
clear in the sequel that the proof of Theorem 3.2.1 makes it possible for us to obtain

the following natural extension of the result of Delange and Halberstam.

Theorem 3.2.4. Let f:N — R be a strongly additive function. Let a:N — Rs( be a
multiplicative function, and suppose that there exist absolute constants Ag, 8,00 > 0,
Yo >0, go € [0,1) and r € (0,1), such that a(n) satisfies the conditions (i)-(iv).
Define

B(x), FB=1,

B(z)/(logloglogz)?, if B # 1,
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and suppose B*(x) — oo as x — oo. If there exists an absolute constant K > 0

such that f(n) = o(z/B(z)) for all squarefree n € [1,x] composed of prime factors p
satisfying | f(p)|> K+/B*(x), and if

p<z
If(p)|>eq/ B* ()

for any given € > 0, then M (x;m) = (pm + 0(1))B(x)% for every fived m € N.

Note that the theorem of Delange and Halberstam [15, Theorem 1] corresponds to
the case a = 1. The proof of Theorem 3.2.4, which we shall only outline, is based on
the proofs of Theorem 3.2.1 and [15, Theorem 1]. We shall also obtain as a corollary

the following analogue of the Kubilius—Shapiro theorem [54, Theorems A, C].

Corollary 3.2.5. Under the notation and hypotheses in Theorem 3.2.4, we have

lim S(z)~! > a(n) = (V)

n<x
f()<A(z)+V4/B(z)

for any given V€ R. The same is true if f is merely additive.

It is clear that Theorem 3.2.4 implies Corollary 3.2.5 when f is strongly additive.
To handle the more general case where f is merely additive, we shall prove a weighted
version of [54, Theorem B] which shows that when it comes to the distribution prob-
lem, there is no essential difference between strongly additive functions and general
additive functions, and thus the distribution of an additive function f is determined
solely by its values at primes.

Before embarking on the proofs, we describe briefly the main steps in the proof
of the uniform estimates for moments. The starting point is the approximation to

moments used by Granville, Soundararajan, Khan, Milinovich and Subedi. Though
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the underlying idea is the same, we need a more complicated version of this approxi-
mation (see Lemma 3.4.1) due to the more general nature of our multiplicative weight
functions a(n). To utilize it, we first need to develop an asymptotic formula for the
mean value of a(n) with n < x restricted to any squarefree integer a € NN [1, z]
(see Lemma 3.3.3). An important feature of this formula is that it holds uniformly
for all squarefree integer a € N N [1, z], which is key to both applying the moment
approximation and making the moment estimates uniform. This formula will serve
as the substitute for the one concerning di(n) used by Khan, Milinovich and Subedi.
Unlike the proof given by Khan, Milinovich and Subedi, which is based on Peron’s
formula and makes use of the special property di(mn) < di(m)di(n) for all m,n € N,
our proof uses the mean value estimate for a(n) given by [11, Theorem 2.1] and is
completely elementary. This is done in the next section.

After applying the moment approximation, we find that the estimation of the
main contribution can be worked out as in [30] and [38]. It is the estimation of the
error terms that is more involved in our case. In particular, the estimation of the error
term in the moment approximation supplied by Lemma 3.4.1 in Section 3.4 requires
separate treatments according as § = 1 or 5 # 1. Besides, since the error term in our
asymptotic formula for the mean value of a(n) over a | n provided by Lemma 3.3.3
in Section 3.3 is weaker than what one can obtain for the special weight di(n) by
complex analytic approaches, we need to handle the case § € (0,1) with some special
care and tailor the selection of parameters accordingly in order to minimize the error
terms. With these new technical complications being taken care of, we obtain the

desired uniform estimates for moments stated in Theorems 3.2.1 and 3.2.2.

Remark 3.2.2. The condition that f(p) = o((logp)) for any given € > 0, mentioned

by Halberstam [32], does not imply (3.2.2) in general. To see this, assume for the
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moment that there exists an infinite subset P of primes such that

1 log log x

sp(x) = Z —=—2——+c¢+o(l) (3.2.3)

pepiral P log log log x

for sufficiently large =, where ¢ € R is an absolute constant. Define

F(p) = (logp)!/2oststoss)

for p € P and f(p) =1 for p ¢ P. Clearly, f(p) = o((logp)°) for any given € > 0. It

is easily seen by partial summation that

2 T
Z f(]]j) — /1 7<10gt)1/logloglogtdsp(t) — (1 + 0(1))(10gx>1/10g10g10g:):,
pEPN[17,x]

which implies that

B(x) = Z f(p)2 + O(loglogz) = (1 + O(l))(logx>l/logloglogx.

pEPN[17,z]

Take y = x/1°¢1°8% and € = 1/2. Since

loglogy = loglog x — log log log x,

1
logloglogy = (14O log log log z,
log log x

we have

log 1 1
(10g y)l/logloglogy = exp 0g l1og T —140 .
logloglog logloglog x
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It follows that
f(p)2 (log y)l/logloglogy > 3(10g x)l/logloglogx S € B(l‘)

for p € P N (y, ] when z is sufficiently large. Hence, we have

%B(m).

Z f IOg )l/logloglog:p >

pEPN(y,x]

D

p<z

|f(p)[>€q/ B()

It remains to construct a set P with the desired property (3.2.3). Note first that

> p<e /P =loglogz + O(1) grows slightly faster than our target

log log x

u(w) = logloglog x’

according to Mertens’ second theorem [35, Theorem 427]. Moreover, if p < p’ are
large consecutive primes, then u(p") —u(p) = o(1/logp), by Bertrand’s postulate. Let
17 be the first prime in P. Suppose that we have already selected for P the primes
up to g, where ¢ is prime. We put the next prime ¢’ in P if sp(q) < u(q) and leave it
out of P otherwise. Then the running sum sp(x) changes by at most 1/q as x moves
from ¢ to ¢/, while the target u(z) changes by at most o(1/logq) as = moves from ¢
to ¢’. Thus, the difference sp(x) — u(x) can be kept within o(1/logx). In particular,
(3.2.3) holds for P with ¢ = 0.
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3.3 MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

Section 3.3

Mean Values of Multiplicative Functions

Without loss of generality, we may assume Ay € (0, 1) in the sequel. In addition, we

shall also make use of the asymptotic formula

Z@ = floglogz + M, + O ((log:c)’AO) (3.3.1)

g0
p<z

with some constant M, € R, which follows immediately from (3.1.2) via partial
summation. In view of our assumption that f(p) = O(1), this formula implies trivially

that B(z) < loglogz. Moreover, if we define, for every prime p,

wip) =Y ),

%
v>2 p

then we infer from (3.1.1), (3.1.3) and (3.1.4) that

() < dezlosp + 1)
p

and that > 1(p) < oo.

Lemma 3.3.1. Let a:N — R be a multiplicative function satisfying (3.1.1) and
(3.1.4) with some ag,99 > 0 and 9o € [0,1). Fiz h € R, ¢y € (0,1) and ¢y € [1,¢,"),
and define

Lop(wsa) =) ola) (log 3—x)h,

q7° q
Ry=a

where a € NN [1,z] is squarefree. Then there ezists a constant 6y > 0 such that

uniformly for all sufficiently large x, any ¢ € [dloglog z/log x, 1], and any squarefree
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a € NN [1,z] with w(a) < (1 — 00)eed ™", we have

fon(a) = <Xa (@) 40 (20<w<a>> ( L enolla) 1ogP+(a))>> (log 2)"

logx \ xcodwla) a

where

i =TI 0

pla v=1

L(a) := [ J(loglog(p + 1))™.

pla

Proof. Let § € (0,1] and fix ¢; € (co,€5"). Put 6, := (1 —09)'c16 and y := 2*%1. For
any squarefree a = p; -+ pp € NN [1, 2] with p; < ... <pp <z and k < (1 — gg)epd 1,

we have kd; < ¢i169 < 1 and

h
T a(pl') - alpy) 3z
[&7h<x; CL) - aiul o'oulz log V1 Vi .
yl Vk pl ...pk pl ...pk
Py Py ST

Vi,V 21

On the one hand, we see that

% v, h
Z a(pi') - alpy) (log 5 )
oov1  O0Vk Lo, .pylC

P
Pyl prk <y

V1,V >1
v k
a(pi') - alpy) h €10
= Z T (log3z)" [ 1+ O o 31 Z v; log p;
pleplh<y 1 k =
V1oV 2>1
a(@) - a(p 200 ey, o L(a) log px _
- o o 4 0 (20t (log ")
k

v 1%
pitop <y
Vi,V 21
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by (3.1.4). From (3.1.1) it follows that

> olpi) - olpi) _ 5 (a)+0 200 - :

p‘fo’/l .. .pzo’/k = Aall (I=go)v1  (1—00)vk
pytepp <y Pk sy P Dy
ViV 21 ViV 21

The sum in the error term above may be split into two sums according as ps? - - - pi* <

yorps? - - py* > y. In the first sum we must have p* > y/(ps? - - - pi*). Thus summing

over v and then over vy, ..., 14, we see that the first sum is

1 - 20() (Jog x)*~1
<y 2, 1= z1*(log p) - - - (log px)
Pyt <y ? g
vo,.. v >1

The second sum is simply

1 1 1
Z (1-o0)va 'p(l—QO)Vk Z (1—g0)r1 < Z (1—eo)v2 _p(l—QO)Vk '

v 1%
P2 pk >y P2 k n>1P1 p2ph sy P2 k
V2,V 21 V2,V 21

It follows that

1 1 20(k) (1og z)k—1
Z (1—g0)r1 (1—00)vk < Z (1—00)v2 (1—g0)vy + c1kd ( g ) ’
cp -y % (log ps) - - - (log pr)

v v 12 v
pll ,,,pkk >y 1 k p22,..pkk >y 2
Uiy Vg 21 v, V21

Repeating this argument, we obtain

Z 1 < QO(k) (log l’)kil

pil e e T ek (log py) - -+ (log pi)”

12
pilp >y
Vi,V 21
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from which we deduce

3 a(p!') :'a(pzk) —3u(a) 40 ( 290 log )"~ ) : (3.3.2)

aol aov,
AU SERERY S ztk(log ps) - - - (log pr)
Py Py <Y
V1,V >1

On the other hand, we have

h h
a(p’) 3o 1 3o
Z poov (log i ) < Z p(l—QO)V lOg Y

T1<p¥<xo logp 1 <u§10gp T2
VEZL
/Ingm <l 3[E2)h d 1
- 08— Z (1—00)t
log,, 1 p t<v<log, z2 p
VEZL

uniformly for all primes p and all 0 < z; < x,. Using integration by parts, we see

that the integral above is equal to

1 Ing T2 1 31’2 h
h _ —
—(10g<3$2/l’1)) Z p(l_go)y B /1 Z p(l—Qo)t d (10g ?) ‘

log,, x1 <v<log, x2 08p T1 t<v<log, z2
VEZ VEZ

Since
> L ! R
I—o0)t 1—00)([t]+1)  pl—g0 — (I—p0)t’
t<v<log, z2 (1=e0) pli—e pmo—1 plTe
VEZ
we have
1 (log(3xy/x1))"
(log(Bza/m))" Y e <

log, 21 <v<log, z2 Ty

VEZ
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and
log,, x2 1 325 h log,, x2 1 32y h—1
J 2 e | <1°g _t) <aolwr [ 7oy (log —t> «
logp 1 t<V§lng o p p ]ng o p p
VEZ
= eh—’o /log(ng/xl) th*le(lfQO)t dt
(3SC2>1_QO log 3
1-00
€h,0 ho1  3%2
—————(log(3 002
< (gt Qoa(3aa/m) <$1 )
eno(log(3zy/ay)) !
o xl—Qo :
1

Hence, it follows that

Z a(p”) <log 3$2) < (log(3xy/x1))" (3.3.3)

ooV 14 1—00
T1<p¥<x2 p Ty

uniformly for all primes p and all 0 < z; < x5. This inequality implies immediately

v v, h
3 a(py') -~ alpy’) (log i ><—20(k)(10gx)h > 1
yepioamey DU prept) Tyt

ViV 21 V2,V 21
20(k) (Jog )k +h=1

~ 2% (logpy) - - - (log pr)”

Lemma 3.3.1 now follows upon combining the above with (3.3.2) and taking dy =

1/(c1 — ¢p) with the range § > dploglog x/log x in mind. O

Let a: N — R>¢ be a multiplicative function as in Theorem 3.2.1 with Ay € (0, 1).
Suppose first that (3.1.3) holds with the restricted sum Z; replaced by the full sum

>, For o9 =1 De la Breteche and Tenenbaum [11, Theorem 2.1] showed

;a(n) = ﬁ 1;[ (1 — é)ﬁg ag,),y)x(logx)ﬂ_l (1 +0 (W)) ,
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3.3 MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

where the implicit constant in the error term depends at most on the explicit and im-
plicit constants in the hypotheses. For the general case where og > 0 is arbitrary, it is
easy to show, by applying the above to a(n)/n~! and employing partial summation

as in the proof of [18, Corollary 3.3], that
1
_ _ o B—1
S(z) = nim a(n) = Az (log x) (1 +0 (—(log x)Ao)) , (3.3.4)

where

Ao i=

! 1\’ 5 )
ol () 1;[ (1 - 5) D o (3.3.5)

v=0

Suppose now that (3.1.3) holds with the restricted sum Z;} being the sum ZP>Q0’
where (g > 1 is some absolute constant. Let % := [[ ., p and 1p,(n) the indicator
function of the set {n € N:gcd(n, ) = 1}. Then a(n)lp,(n) is a nonnegative
multiplicative function satisfying (3.1.1)—(3.1.4) with the sum Z;) in (3.1.3) replaced

by the full sum . In particular, (3.3.4) is applicable to a(n)lp (n). Thus, we
o 0

obtain
1
— fe) B—1
; a(n) = Aa(Py)z (log 3) (1 +0 <—(log Bx)AO)) , (3.3.6)
ged(n,Po)=1
where

wir= e I (-3) T (-3) S5

p<Qo p>Qo v=0

Examining the proof of Lemma 3.3.1, we find that for every given h € R,

a(q) 32 \" = a(p¥) 1
Z — <log—) = H Zw(logx)h (1—1—0(1 >)
]gé‘; q 4 p<Qo v=0 p 08T
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for all sufficiently large . Combining this with (3.3.6) gives

S@=Yal@ 3 a)=ra(logz)’! (1 10 (m)) ,

q<z n'<z/q
Rq|Po ged(n/,Pp)=1

which is the same as (3.3.4).

For our applications, we will need an asymptotic formula for

S(z;a) = Su(x;a) == Z a(n)
n<lx
ged(n,a)=1

uniform in @ € NN [1,z]. One may be tempted to apply (3.3.4) to the function
a(n)1,(n), where 1,(n) is the indicator function of the set {n € N:ged(n,a) = 1}.
However, it is not immediately clear whether the implied constant in the error term
obtained via this naive approach is independent of a € NN [1,z|. Fortunately, the

following lemma provides the desired estimate for S(x;a) under the hypotheses (i)—

(iv).

Lemma 3.3.2. Let a: N — Rxq be a multiplicative function satisfying (3.1.1)—(3.1.4)

with some Ay € (0,1), 8,00 >0, U9 >0, 0o € [0,1) and r € (0,1). Then we have

S(w;a) = Aa(a)z™ (log )"~ (1 +0 <;>)

(log )40

uniformly for all sufficiently large x and all a € NN [1,z], where

o= e I (-3) TI(-3) S5

pla pta v=0

The tmplicit constant in the error term depends at most on the explicit and implicit

constants in the hypotheses.
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Proof. Let a € NN [1,z]. For simplicity of notation, we write Y for sums in which
the indices take values coprime to a. As we have demonstrated above, there is no
loss of generality by assuming that g = 1 and that (3.1.3) holds with the restricted
sum Z; replaced by the full sum Zp. We start by determining the relation between
Mo(a) and \,. Note that condition (iv) implies that a(p) < (loglog(p + 1))”, from

which it follows that

Z a(p)logp < (loglogz)” loga < (loglogz)" log z.
pla
By (3.1.2) we have
a T
Z a(p)logp = Bz + O (W) ;

p<z

from which we deduce

Za a(p) = Bloglogz + M, + O ((logz)~™) .

p<z

Combining the above with (3.3.1), we see that

pla
e (-5 “o) L omy ) =a =1
=Xaexp (=Y ——=+ Y +0(1) | <A < L.
pS:vp p<w p

This assures us that there is no need to differentiate A\, (a) and A, in the error terms.
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Next, we connect S(z;a) with

It is clear from (3.3.4) that S(z;a) < S(z;1) < z(logz)?~! and T(z;a) < T(z,1) <

(log z)®. Moreover, it is shown in the the proof of [11, Theorem 2.1] that

T(x;1) = (1 +0 ( >) %(ng)ﬁ. (3.3.7)

log

Following the proof of [11, Theorem 2.1], we find

S(x;a)logz = Zaa(n) logn + Za a(n) logg

n<x n<x

= Zaa(/f) Z a(p”)logp” + /w S(tt; “) gy

k<z p’<z/k =
ptk

=S ""ak)Y a)logp+0 [ Y ak) - a(p)logp

k<z p<z/k k<z p<z/k
plk

+0 Z a(k) Z a(p”)logp” |+ O (z(logz)” )
k<z p'<z/k
v>2

= pri\xr,a) — aOé 0% o T a(k)
= fzT'(z,a) Z (k) Z (p)1 gp+0< kgzxkaog(?)x/k))AO)

k<wz p<z/k
pla

+ O (z(logz)” ™), (3.3.8)
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since (3.1.3) and (3.3.4) imply that

> ak) Y alp)logp+ > alk) > ap”)logp”

k<z p<z/k k<z pY<z/k
plk v>2
= Z a(k) Z (a(p)a(p” ") logp”™" + a(p”)logp")
k<z pY<z/k
v>2
v—1 v
(r+1)/2 a(k) a(p) ) a(p™!) | alp”)
<7z Z L(r+1)/2 Z Z " p'r(u—l) + prv
k<z p v>2
2 v
(r+1)/2 a(k) a(p) a(p”)
<z Z k(r+1)/2 Z p27" + Z prv
k<z p v>2

a(k
<Y
k<z

< z(logz)?1.

By partial summation we have

a(k) _ S) * log(3xz/t) — Ag
kzgm k(log(3z/k))% — z(log3)Ao + /1 P2 (log (32 /1)) Ao+ S(t)dt
1 * (log3t)°~1
< (logz)” +/1 g Ge 0}

g (Jog 3 + t)F~1
= (logz)"! / Lt
(log.)™ + o (log3z —t)4o

dt

log x)/2
log 2)°~1 4 — e (log3 + )"~ dt
< (logz)™ 4 (log )4 J, o8
b1 log z 1
1 - ———dt
+ ( ng) /(;ng)/Q (log 3r — t)AO

< (logz)?~*. (3.3.9)
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Let 7, := x/(logx)? For k < z; we see that

xZ
a(p)logp < (loglogz)™loga < ——F~—
2 k(log(x/k))"e

p<z/k log
pla
so that
Za a(k) Z a(p)logp < x Z a(k) < x(logx)P~. (3.3.10)
k(log (3 /k)) 4o
k<zi p<z/k k<z
pla

On the other hand, we have by (3.1.2) that

Z“ alk) Y ap)logp<a Y %k) < 7 ((logz)® — (logz1)” + O((log z)" ™))

T <k<z p<zx/k x1<k<x
pla

< z(log )’ loglog z, (3.3.11)

where we have used (3.3.7) to estimate the sum over k and the mean value theorem
to get

(logz)? — (log )" = 55’8_110g£ < (log )’ 'loglog x
T

for some ¢ € (logx1,logx). Combining (3.3.10) with (3.3.11), we obtain

> "alk) Y alp)logp < w(loga)’ .

k<z p<z/k
pla

Inserting this and (3.3.9) into (3.3.8) yields

’ T(z;a) + O (z(logx)?~ =) (3.3.12)

S(w;a) = log

uniformly for all sufficiently large = and all a € NN [1, z].
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To estimate T'(x; a), we repeat the argument above with a(n) replaced by a(n)/n.

From (3.1.2) it follows that

Z o(p) logp = Blogz + O ((log x)l_AO) : (3.3.13)
p<w p
Setting
a T
U(z;a) = Z a(n) logf :/ (i’ %) dt, (3.3.14)
n<x n 1=
we have
T(x;a)l = awl “@1 z
x;a) ogx—z ogn—i-z og
= o = n n
a k a
= Z #Z alp )logp + U(z;a)
k<z p'<z/k p”
plk
=y a0 Y Z
k<z p<ac/k; p k<z p<z/k
plk
a ok v
+0 Z _045{:) Z a(]i)logp” + U(x;a)
k<z p”<z/k’ p
=(B+1 Za al Z logp +0 ((log )= T(z;a)),
k<z p<z/k

pla

97



3.3 MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

since

k<z p<z/k k<z k pY<z/k p"
plk v>2
_ N alk) a(p)a(p!)logp”~" + a(p”) log p”
k<zx k p’<z/k p"
v>2
a a(k) a(p)? @),
< 72(710 Ly ey,
k<z P v>2
a ok
< # =T (z;a)
k<z

In view of (3.3.13), we have

Z p < Z log + Z #logp

p<z/k p<(log z)? (log x)?<p<x
pla pla
1
< loglog x + (log log x)"° Z 8P
(log x)2<p<z
pla
loglog

< loglog x + (loglog x)"w(a) < loglog x,

(log z)?

so that

Za o Z logp < (loglog x)T(x; a).

k<z p<z/k
pla

It follows that
T(z;a)logz = (B + 1)U(z;a) + O ((logz)' =T (2;a)) .

Hence, there exists a function e(x;a) such that €(z;a) = O((log x)~4°) and

1 B+1
1—e(x;a) logz

T(z;a) = U(z;a) (3.3.15)
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3.3 MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

uniformly for all sufficiently large = and all @ € NN [1, z].
Finally, we estimate U(x;a) and T'(x;a) by following the proof of [55, Theorem

A]. Fory > 2 and a € NN [1,y], let

V(y;a) :=log (&%U(y;ag :

In light of (3.3.14) and (3.3.15), we have

d B+1 1 d
—V(y;a) = — + C
(y;a) ylogy  U(y;a) dy
B+l | T(y;a)
ylogy  U(y;a)y
B+l _ e(y;a) < 1
~ylogy 1—e(y;a)  y(logy)Aot!

Uly;a)

uniformly for all sufficiently large y and all « € NN [1,y|, which implies that

* d
V, = —V(y;a)d .
/2 dyV(ya)y<oo

Since

Viwia) = V(2ia) = Vo [ V) dy = Vi + 0 ((logz) )

uniformly for all sufficiently large = and all @ € NN [1, z|, it follows that

B+1

Tog ¥ (#:0) = exp(V(w:0)) = exp(Va + V(2 0)) (140 ((logz)™™))

Combining this estimate with (3.3.15), we infer
T(z;a) = exp(V, + V(2;a))(log ) (14 O ((logz)~)) (3.3.16)

uniformly for all sufficiently large x and all @ € NN [1,z|. The leading coefficient can
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3.3 MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

be made explicit by arguing as in the proof of [55, Theorem A]. Alternatively, we can

also take advantage of (3.3.6). Fixing a € N, we have by (3.3.6) with og = 1 that

>

T(a;0) = “5(‘” (log2)? (1+ 0 ((log z)~*))

for all sufficiently large . Comparing this with (3.3.16) shows that exp(V,+V(2;a)) =
Aa(a)/B. Carrying this back into (3.3.16), we obtain

>

T(w;a) = “ﬁ(“’ (log ) (1+ 0 ((logz)))

uniformly for all sufficiently large = and all @ € NN [1,z]. Inserting the above into

(3.3.12) completes the proof Lemma 3.3.2. O

The next result, which is key to the computation of moments, is a direct corollary

of Lemmas 3.3.1 and 3.3.2.

Lemma 3.3.3. Let a: N — Rxq be a multiplicative function satisfying (3.1.1)~(3.1.4)
with some Ag € (0,1), B,00 >0, 99 >0, g0 € [0,1) and r € (0,1). Fiz ey € (0,1).
Then there exist constants 69 > 0 and Qo > 2, such that uniformly for all sufficiently
large x, any § € [6ploglogx/logx, 1], and any square-free a € NN [1, 2] with w(a) <
(1= po)ead™t, P~(a) > Qo and P*(a) < 2°, we have

S a(m) A <F (50,0) 4 O (20<w<a>>L(a) (( L epalog P*(a)))) 2 (log )7L,

a log )40 log x

n<x
aln

where L(a) is defined as in Lemma 3.3.1,

F(og.a) =[] 1—<Za<p”>p-aov) ,

pla v=0
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3.3 MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

and A\, is defined by (3.3.5).

Proof. Suppose that §y > 0 is a constant for which Lemma 3.3.1 holds when ¢y = 1
and h € {f—1,6—1— Ap}. Let Qo > 2 be such that

N | —

pao v

i a(p”) _

for all p > Q9. Then we have

F(oo,p) =Y _ 0;8?;) +0 (Z %) - % i) (wo(p) + 0;822) (3.3.17)

for all p > Q. For any square-free integer a € [1,z] with w(a) < (1 — go)ed ™,

P~(a) > Qo and P*(a) < 2°, we have by Lemma 3.3.2 that

> a(n) = Xa(a)z” (log 3z)" ! (1 +0 (W)) . (3.3.18)

n<zx
ged(n,a)=1

Note that

Sam =Y a@ Y a).

n<z q<z n'<z/q
aln Rqi=a ged(n/,a)=1

By (3.3.18), the main term of the inner sum contributes

Aa(@)z7 > " alq) (log %x)ﬁl,

q<x
Ry=a

which, by Lemma 3.3.1, is equal to

A ()2 (Xa (@40 (2O<w<a>> ( L eil(a)log P%)))) (log 2!

logz \ x0«(@) a
20w@) /] L(a)log P*
=t (Flona) 40 (T (5 o+ H BT ) ) omtogay
logx \a a

101



3.4 COMPUTING MOMENTS

5w(a)_

since a < x Analogously, the contribution from the error term of the inner sum

is

20w [,(a)log P*(a)
alogx

<Aa (F(Uov a) + ) 27 (log )7~ '~

AL 20
< (@) 27 (log )
a

B—1-Ao
)

where we have used the estimate F(0y,a) < 2°@(@)[(a)/a, which follows directly
from (3.1.4) and (3.3.17). Combining these estimates completes the proof of Lemma
3.3.3. .

Remark 3.3.1. We point out that the lower bound @)y for w(a) in the lemma above
is by and large an artificial thing, whose value is insignificant for our applications.
However, we need it because (3.3.17) may not hold for small primes. As we shall see
later, having such a lower bound also frees us from dealing with minor contributions

from small primes.

Section 3.4

Computing Moments

By rescaling the strongly additive function f in Theorem 3.2.1, we may assume,
without loss of generality, that | f(p)|< 1 for all primes p. Note that 0 < F(0¢,p) < 1

for all primes p. For every p we define f,: N — R by

f(p)(1 = F(oo,p)), ifp|n,
fp(n) =
—f(p)F(00,p), otherwise.
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3.4 COMPUTING MOMENTS

Given any ¢ € N we may also extend f, via complete multiplicativity by setting
= Il.ﬁin)
r“llq

It is clear that |f,(n)|< 1. The following result provides an approximation of the

moments of f in terms of those of f,.

Lemma 3.4.1. Let a:N — Rsq be a multiplicative function satisfying (3.1.1)—~(3.1.4)
with some Ag, 8,00 >0, 99 >0, gg € [0,1) and r € (0,1). Let f:N — R be a strongly
additive function with | f(p)|< 1 for all primes p. Then there exists a constant Qy > 2,

such that

Y am)(f(n) = A@@)" =) a(n) ( > fp(n)) + O (E(y, z,w;m))

n<y n<y Qo<p<z

holds uniformly for all sufficiently large x > z, any y > 1, and all m € N, where

m o( b
Ey,z,w;m) := 20(m=a) (150 (y) 2)) w(n; z,w
zwm)= 3 () log(v +2))°Y_am)| 37 fo(n)| winzw),
a+b+c=m n<y Qo<p<lz
0<a<m
b,c>0

1/10g(v+2); and

=logz/logz, w:==x

w(n; z, w) Zl

z<plw
pln

Proof. Let @y > 2 be a constant for which (3.3.17) holds. Suppose that z > Qg is

sufficiently large. By (3.1.4), (3.3.17) and the fact that > 10(p) < oo, we find

> f(p)F(o0,p) = A(z) + O(1).

Qo<p<z
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3.4 COMPUTING MOMENTS

We compute

f(n) = A@) =Y f) = > f)F(o0.p)+O(1)

pln Qo<p<z
p>Qo
= > f@+)_f) = > f®)F(oep)— > flp
Qo<p<z p>z Qo<p<z z<p<lz
p|n pln
Yo L)+ f) = D f(p)F(o0,p) +O(1).
Qo<p<z z;|>nz 2<p<z

By (3.3.1) we have

Z f(p)F(o0.p

z<p<lzx

z<p<lz

Since

SIS 3 1< winsz,w) + log(v +2),

p>z z<p<lzx
pln pln

it follows that

fn) = A(x) = Y fo(n)+ O (w(n; z,w) + log(v + 2)).

Qo<p<z

We have therefore proved

Y am)(f(n) = A@@)" =) a(n) < Y foln) + O (wlns z,w) +log(v + 2))) :

n<y n<y Qo<p<z

Opening the mth power on the right-hand side by means of the multinomial theorem

completes the proof of Lemma 3.4.1.

Let z = z'/v

of z and m to be chosen later. Fix ¢, € (0,1) and 19 € (0,1], and suppose that
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and w = 2'/1°¢("+2) be as in Lemma 3.4.1, where v > 1 is a function

o(1)



3.4 COMPUTING MOMENTS

y € [z z]. Under the hypotheses in Theorem 3.2.1, we seek to estimate the weighted

moments

> a(n) ( > fp<n)>m,

n<y Qo<p=<z

appearing in Lemma 3.4.1. Expanding out the mth power we see that
Soo)( X 50) - X et @4
n<ly Qo<p<z Qo<p1;-.-Pm <z Ny

This suggests that we study the sum

> an)fy(n)

n<y

for ¢ € N with w(q) < m, P~ (q) > Qo and P*(q) < z. A key observation is that

fo(n) = fy(ged(n, R,)). From this we deduce

Yoamfyn) =Y fila) Y am) = flaud)) am).

n<y a|Rq n<y ab|Rq n<y
ged(n,Rq)=a ab|n

Note that logy/logz € [nov,v]. By Lemma 3.3.3, there exists a constant vy > 0,

independent of @)y and 7y, such that

> a(n) fy(n) = A (Gloo,q) + O (29 E,(q))) y™ (log y)* ! (34.2)

n<y

holds uniformly for all sufficiently large z, any y € [#™, ] and v € [1,*, vo log x/log log z],
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3.4 COMPUTING MOMENTS

and all m < (1 — gg)eglogy/log z, where

G(00,9) = Y fala)p(b)F (o0, ab),

ab| Ry

E,(q) = Z ’fqml‘bll(ab) ( 1 4 B 10gp+(ab)) '

A
b (log y) logy

Combining (3.4.2) with (3.4.1) gives
n<y Qo<p<z
where

G(z):= > Gloo,pi-pm),

Qo<p1,.-,pm <2

D(yaz) = Z Ey(pl"'pm)'

Qo<p1,.-,pm <2
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3.5 ESTIMATION OF G(z) AND D(y, 2)

Section 3.5
Estimation of G(z) and D(y, 2)

It is easy to see that G(oy,q) is multiplicative as a function of ¢. Indeed, given any

¢1,q2 € N with ged(qq,g2) = 1, we have

G(Uo,%)G(UO,(h) = Z fm(al)fqz(GZ)M(bl)ﬂ(b2)F(O'O7albl)F(007a2b2)

a1b1|Rg,
agba|Rgy

= Z Jai(@1a2) fo, (araz) p(biba) (00, ayazbiby)

a1b1|Rqy
azb2|Rgqy

= Z faran (a1a2) 1(b1b) F'(00, arashiba)

a1b1|Rg,
agba|Rgy

= > faw(@n®)F(o,ab) = G(oo, q140).

ab|Rq, g5

Furthermore, we have

G(‘707PV> = fp”(1> + fp"(p)F(onp) - fp”(DF(UO,p)
= (=f(p)F(00,p))” + (f(p)(1 = F(00,p)))" F(00,p) — (= f(p)F(00,p))" F(00,p)

= f(p)"F(00,p)(1 = F(09,p)) ((=1)"F(00,p)" " + (1 = Floo,p))" )

for all prime powers p”. Note that G(og,p) = 0, |G(00,p")|< 1/4, and G(og,p”) > 0

when 2 | v. In addition, we have by (3.3.17) that

Glon.) = FFlon (1 = Flon ) = alp) 2240 (vulp) + 52} (351
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3.5 ESTIMATION OF G(z) AND D(y, 2)

and that

Glov. )< ) Floup) < alp) L2

+0 (wo(p) + O;(p>2) (3.5.2)

200

for all p¥ with p > Qg and v > 2.

Now we proceed to estimate G(z) in the main term of (3.4.3). Recall that y €
[z, 7] and z = x'/*. We shall suppose in this section that 1 < m < min(v, hoB(z)'/?),
log(v+2) = o(B(z)), and mlog(v +2) < B(x), where 0 < hy < (3/2)%/3 is any given
constant, and obtain a uniform treatment for G(z) and D(y, z) under this more gen-
eral assumption. Since G(0y, q) is multiplicative in ¢ and G(og,p) = 0 for all p > Q,

we have

Gz)= Y. G(oo,pi-pm)- (3.5.3)

Qo<p1,.--,Pm <2
p1---Pm square-full

When 2 | m, the main contribution arises from

m/2
m!
G 2. Gleplp)=Cu 3 []Gleord),
Qo<P1,-Pm 2 <2 Qo<p1;-Pmy2<z 1=1

P1,---sPmy2 distinct P1,--Pm /2 distinct

(3.5.4)
since the number of ways to partition a set of m elements into m/2 two-element

equivalence classes is
m! m!

(m/2)!2m/2 Crm:

mil =

The sum on the right-hand side of (3.5.4) can be rewritten as

m/2—1
2 2
E H G<O-07pi> E : G(007pm/2)'
Q0<p17“'7pm/2—1§2 =1 Q0<pm/2§'z
P1ye-Pmy2—1 distinet Prm/27P1sPm /21
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By (3.5.1) and (3.3.1), the inner sum over p,,/, is equal to

m/2—1
S Glon)- S Glons?) =B<z>+0( ) @> — B(2)+0 (loglog(m + 2)),

, poo
Qo<p<z =1 Qo<p<qn

where N = m/2 + w(Qy) and gy is the Nth prime. Repeating this argument we

obtain
m/2
Z HG(%»PZZ) = (B(z) +O(loglog(m+2)))m/2_
Qo<P1,Pmy2<z =1
Ply-Pm/2 distinct
But

-~ < Blog(v+2) +O(1).
z<p<z p

Hence when m is even, the main contribution to G(z) is given by
Con (B(x) + O(log(v + 2)))™? = C,, B(2) % (1+ O (mB(x)log(v +2))) .

The remaining contribution to G(z) comes from

2. 2 > (klm k) 1 Goo. 0. (3.5.5)

s<m/2 Qo<p1<...<ps<z k1+-+ks=m i=1
k1,..sks>2

Since (3.5.5) vanishes when m < 2, we may suppose m > 3. By (3.5.2) we see that

< le <a(pi)%,i)2 +0 <¢0(Pz‘) + 0;(2Lazo)2>> '

)

H ’G<O-07pi’€i)
=1

Thus, we have

1

< Q(B(x)—i—()(l))s = LBy (140 (sB@) ™) < B(x)s.

s!

Z H ’G(U()vp?i)

Qo<p1<...<ps<z i=1
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3.5 ESTIMATION OF G(z) AND D(y, 2)

Since
m m! m!/fm—s—1
< = 1= —
2 (kl,...,ks>_25 2 28( s—1 )
ki4-+ks=m ki+-+ks=m
k1,o.,ks>2 k1,...,ks>2
(3.5.5) is

1
sl 2s

<<m!Z

s<m/2

(m :1_ 1)3(95)5.

To estimate the sum above, we put m; := |[(m — 1)/2| and observe that

> 5!123 <m S__S . 1)3(95)8 = B&)™ Y 5!123 (m :1_ 1> Blx)m

s<m/2 s<my

1 —s—1 mi1—s
N e

s<mi

where we have used the assumption that B(z) > m®/h3 with some 0 < hy < (3/2)%/3.

Let
1, if 2 | m,

1/2, otherwise.

Then my; = m/2 — e,,,. Note that

- L (m=s—=1\ aem-s) 35 . —3m 3 1 9\™ ™ (m"\’
" slos\ s—1 Joo =T sl(s— 1) \4 >

s<m/4 s<m/4

< m 3™ gml m_4 m/4<<% 3em
" 4 2 ml

Cm 1 2+1 %
—m_ =m e
m!  2m2T7(m/2 + 1)

since
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3.5 ESTIMATION OF G(z) AND D(y, 2)

by Stirling’s formula. Next, we have

1 /m—s—1 1
—3m 3(m1—s),  3s o(m),,,—3m
m o E o < s—1 )ho m>® < 2 m o E

sl (s —1)!
m/4<s<m/3 m/4<s<m/3
- QO(m)meml m*\ ¢
— mm/2 Z 7
m/4<s<m/3
20(m)m—3m1 A
2 pAm/3
< mm/2 m

— 2O(m)m72m/3+36m < %m?;em.
m!

Finally, we observe that

1 m—s—1
—3m1 h3(m1—3) 3s
" Z sl 28 ( s—1 ) 0 "

m/3<s<mi

1 /fm—s—1 _
__ __—3m 3(m1—s)  3s
=m Z sl 28 ( —2s )ho "

m
m/3<s<my

1 mi—s
< m73m1 Z o (m o S)mfZShg( 1 )m3s

m/3<s<my

1y —3m mi! [ 2m m_25h3(m1—s) 3s
m1! Z sl 2s ? 0 "

m/3<s<my

m—3m1 Z 1 <m>m1—8 2m me2s h3(m1*5) 3s
— = — m
my! 22\ 2 3 '

m/3<s<mi
m—2m1 3/2 m=2s
m 2hy Cr 30
NETETEPY ( 3 ) <o
m/3<s<mi

Collecting the estimates above, we see that the contribution to G(z) from (3.5.5) is

IN

IN

< CpymPB(z)™ = C,,B(z)? (Bn(lx)) h < CpnB(x) B0
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3.5 ESTIMATION OF G(z) AND D(y, 2)

We can therefore conclude that

G(z) = C,B(z)% (xm <1 +0 <%§j2))> +0 (%)) . (3.5.6)

Next, we estimate D(y, z) in the error term of (3.4.3). By definition, we have

S IED SIS DR PR AT

s<m Qo<p1<...<ps<z k1+--+ks=m
k1,...,ks€N

Let
L( ab
UO, Z |fq ’

ab| Ry

Then H(oy, ¢) is multiplicative in g. Moreover, we have

Ey(q) < H(0o,q) ( L & 10gP+(q)) .

(logy)#o log y

It follows that D(y, z) < Di(y, z) + €31 D2(y, 2), where

D1<y,Z = logy AO Z Z Z (kl’éi ks) EH(U(LP?)?

s<m Qo<p1<...<ps<z k1+ +ks=m

. ks€N
D2 Y, logy Z Z logps Z (l{}l ) HH O-O’pz
s<m Qo<p1<...<ps<z kl]j_—sz:Nm PREER
Lyeeey s€

By Mertens’ theorems [35, Theorems 425, 427] we have, for any ¢t > 3, that

Yo
(loglogt)” ™ + 0O(1) (3.5.7)

log lo 1
Z( g g(;ﬂr )

p<t

1
Yy +1
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3.5 ESTIMATION OF G(z) AND D(y, 2)

and that
log 1 1))%1 1 v
Z (loglog(p +1))™ logp _ (1 + 0 ( o )> (loglogt)” logt. (3.5.8)
p P logt  loglogt

Furthermore, let

%
=
Il
o
I 3
o
—N
> 3
——
~
Bl

is the kth Stirling number of the second kind of size n. The sequence {T,, ()}, of

the Touchard polynomials is known to satisfy the recurrence relation

Toi(t) = t; (ZL)Ti(t),

from which one verifies readily by induction that

T,(t) < (t + 2 > 1)n (3.5.9)

for all n > 1 and ¢ > 0. Since

H(o0,7") = | { ()| F (00, p) (1 ‘ Lg”) ML)

(loglog(p + 1))”0)
p

(1 - F(Ump))

— £ (F<ao,p> T

for any prime powers p” with p > @, we obtain, from (3.3.17), (3.5.7), (3.5.8) and
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3.6 ESTIMATION OF E(y, z,w;m)

(3.5.9), that
20(m) ) .
Dily.2) < (log )40 Z 8,(10g log 2) (Fo+1) Z (k ’ >
© oy + ks = 1y oo Rs
k1,...ks€N
20 20(m)
(log z)4 Tn ((loglog 2)"™) < (log )4 (log log z)™ "1,
and that
20(m) Jog ~ 1 .
D < loe log z)5(Po+D)—1
2(%2) - log:c Z (S_1>!(Og ng) Z kl,...,ks
s<m .
ki,..., kseN
20(m) 20(m)
< me ((log log 2)190+1) < T(log log x)m(ﬂ0+1)_1'

Hence, we conclude that

m m _, [ loglogz  €p,
D(y,Z) < 20( )(IOgIOgZC) (Fo+1)-1 (W + %) . (3510)

Section 3.6

Estimation of E(y, z,w;m)

In this section, we seek to bound the function E(y, z, w;m) introduced in Lemma 3.4.1
under the assumptions in Theorem 3.2.1. We start with the case § = 1. Suppose
that 1 < m < hoB(z)"3, where 0 < hy < (3/2)?/% is any given constant. Recall that
y € [2™, 2], z = 21V and w = 21/1°5"*2) With the choice v = (1 — go)'e; 1y ',

we clearly have v € [n;", vologz/loglogz] and m < (1 — gp)eqlogy/log z. Inputting
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3.6 ESTIMATION OF E(y, z,w;m)

(3.5.6) and (3.5.10) into (3.4.3), we obtain

Za(n)( > fp(n)> = A\Cy, B(z)

n<y Qo<p=<z

w3
/N
>
3
_|_
Q
VR
|| 3.
=
~_
N~
<
3
w
o))
=

The key lies in the estimation of the sum

w(n; z,w)°. (3.6.2)

D_aln

n<y

)Y foln)

Qo<p<lz

In the present case, we may simply use the trivial bound w(n;z,w) < v < m, so

that (3.6.2) is bounded above by

(b)mb Z a(n

n<y

Z fo(n)

Qo<p<z

It is clear that we can use (3.6.1) to handle the sum above. If a is even, then this

sum is < A\C,B(2)2y%0; if a is odd, then it is

a—1\ /2 at+1\ /2

< | 2ol

n<y

1A

Qo<p<z

< )‘a\/ Ca,IC,H,lB(I)%yUO

Dol

n<y

)Y fn)

Qo<p<z

by the Cauchy—Schwarz inequality. The sequence {Cy}72, is strictly increasing, which

can be easily seen from the identity

Cop +1 r'e/2+1) _ 3 r'e/2+1)
Co V2 T((t+1)/2+1) "7 T((t/2+1/2)
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and the fact that I'(y) is strictly increasing on [3/2,00). Moreover, we have by

Stirling’s formula that

Ce < 1 ((€+ 1)/2)€/2+1€—(£+1)/2 - 1
Crin (+1 (6/2)(”1)/26*‘3/2 711 1’

which implies that

| a O(m—a)
C, < 20m-ac, ) [ L < gom-ag, [ © 2 C
m = ()

for all 0 < a < m. Hence, (3.6.2) is bounded above by

20(m—a)>\a - b " m—a a
mC:a m B(z)zy™ < Qo(m*a))\aCm (\/R) B(z)2y°°.
(v/m)

Inputting this inequality into the definition of E(y, z, w;m), we conclude that

E(y, z,w;m) < A\Chrnyy”® mzl (m)B(x)g (O (\/Tin))mfa < )\aC’mm%B(:v)mTfly"o.
= (3.6.3)
Now we consider the case 3 # 1. Suppose that 1 < m < B(z)?/(loglog log z)*/?
and that B(x)/(logloglog x)? — 0o asx — oo. In this case we take v = (loglog z)™(0+2),

so that v € [2n5 ", v log 7/loglog 2] and m < (1 — g)eg logt/log 2 for any t € [27/2 1]

when z is sufficiently large. Inserting (3.5.6) and (3.5.10) into (3.4.3) leads to

(5 40) st (v i)

n<t Qo<p=<z
(3.6.4)

uniformly for all t € [2™/2 z]. Again, we need to estimate (3.6.2) uniformly for
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3.6 ESTIMATION OF E(y, z,w;m)

y € [z z]. Note that (3.6.2) can be rewritten as

a

Z fo(n)

Qo<p=<z

>y oy () S e

k=1 z<p1<...<pp<w l1+---+lp=b n<ly
Iyl >1 p1-Dr|n

Observe that

a a

Yooam)| Y L) = Y ale Y am)] Y f0)

n<y Qo<p<z <y n’'<y/q Qo<p<z
p1Pr|n Rq=p1--p ged(n’,q)=1
a
< Y alg) Y am)| D f)
q<y n<y/q Qo<p<z
Rq=p1-pi

since py, ...,pr > p. If ¢ =pi* - p* > /y with given z < p; < ... < pp < w, then we

have the trivial estimate

P (2 S a(n) < Aam(2)" (%) (log 3—5/>51

n<3y/q

Z a(n)

n<y/q

Z fp(n)

Qo<p<z

by (3.3.4) and the fact that |f,(n)|< 1. By the proof of Lemma 3.3.1, and particularly
by (3.3.3), we find that

-1 -1
@) (1,03 e alpy) - alpf) () 3y’

Z qO’O Og ? o Z pUOVI . e paoyk Og le . .. pyk
VI<4<y VI<plpty g ! g
Ry=p1--pk Vlyenny vip>1

20(k) (log y>k+ﬁ—2

(Vo) ™

?

from which it follows that

a

2270y (log y)* 772

(Vo) ™™

L Ao (2)

S alg) 3 am)

VY<q<ly n<y/q
Rg=p1-pk

Z fr(n)

Qo<p<z
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3.6 ESTIMATION OF E(y, z,w;m)

Summing the above over all z < p; < ... < pp < w yields immediately

a

Z Z a(q) Z a(n) Z fo(n)

2<p1<..<ppLw /Y<q<y n<y/q Qo<p<z
Rq=p1--pk
o 20y (logy)* 572 Aay™(logy)® !
S)\Oﬂr(z) W(w)k o0 S = (3.6.5)
k() k()

for sufficiently large z, since y € [2™, 2], a + k < m < (loglog z)'/?/(loglog log z)*/3,

and

m m l/logloglogr(m log log 1o x)m
a ko« w w w < z g 10g 10g .
m(z) ()" < (logw +0 <(log w)? < logw) — (log x)™

If g=p"---p < \/y, then x/? < VY <y/q <y < x. Thus, we can apply (3.6.4)

with ¢ = y/q to handle

a

> am)

n<y/q

Z fr(n)

Qo<p<z

If a is even, then this sum is

" oo ,871 O(m_a) " o0 ,871
< A\CoB(z)? <g> (log g) < %B(gg)a (E) <1Og Q) ;
q q (v/m)

if a is odd, then it is

a—1 1/2

< Z a(n)

Z fp(n)

> a)

Z fp(n)

n<y/q Qo<p<z n<y/q Qo<p<z
(" (v
<K )\a Ca_10a+1B(JI)5 (—> (10g —>
q q
90(m—a) A C . 00 B-1
< 2t (1) (o)
(v/m) q q
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3.6 ESTIMATION OF E(y, z,w;m)

by Cauchy—Schwarz. It follows that

Z a(q) Z a(n) Z fo(n)

a<\y n<y/q Qo<p<z
Rg=p1-pk
QO(mfa))\aCm 00 " -1
< s CHEA (M)
(v/m) <y q
Rg=p1-pk

O(m=a) ) C a S a(p?)
<= P B(x)2y™ (logy) o
(v/m) H; 5

b We 12070 (log 1)1 i a(p;) '
RN B(x)2y™ (logy) 11( = +¢0(Pz))

for all 0 < a < m. Since (3.3.1) implies that

k
1 a(p 20(k)
) H( ))SH<Z (pﬂo)wo(p))) <27 tog0)
2<p1<...<pr<w i=1 z<plw
we obtain
> Yo al@) ) am)| D fln)
z<p1<...<ppw <y n<y/q Qo<p<z
Rg=p1-pk
0 \m=aj )
< —C(logv) B(x)2y”™ (logy)* ! (3.6.6)

= R(m)”

Combining (3.6.6) with (3.6.5) and extending the inner sum over ¢ to the entire range,

we conclude that

Z fp(n)

Qo<p<z

> Y. al) ) am)

z<p1<..<pp<w  q<y n<y/q
Rg=p1-pk
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3.6 ESTIMATION OF E(y, z,w;m)

Hence, (3.6.2) is bounded above by

20(m=a)) .C i " (log ) b
2 Al B0y (0 ) ()
(Vi) kz:: ] Z_ ool

20090 Crn 18 p1 15 " (b -
E By o) Y| o

20(m—a)>\a - "
< 20O )87 log vy (log )
(V)

It follows by (3.5.9) that the above does not exceed

200 a
27 0O B8 (log v)Py™ (log 1),
)

where we have used the observation that logv > mlogloglogx > m > b. In other

words, we have shown that

@ 20(m—a) )\ a
sz, 0) < 2 29O B0 (g )Py Lo ).
(V)

> _a)

n<y

Z fo(n)

Qo<p<z

Inputting this inequality into the definition of E(y, z,w;m), we conclude that

-1

E(y, z,w;m) < XaCry™(logy)* ;0 <ZL>B(I‘)Z (O <1j/g£>)m-a

m—

< AaCrv/m(logv) B(z) le"‘) (logy)?~!

< AaCrym 2 (loglog log :U)B(x)mTflyUO (logy)?~1. (3.6.7)
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3.7 DEDUCTION OF THEOREMS 3.2.1 AND 3.2.2

Section 3.7
Deduction of Theorems 3.2.1 and 3.2.2

Theorem 3.2.1 now follows immediately upon combining (3.6.1) and (3.6.4) with
(3.6.3) and (3.6.7) and invoking Lemma 3.4.1 and (3.3.4). In fact, we have shown

that the same asymptotic formulas which hold for M (x;m) also hold for

S(y)™ Y amn)(f(n) = A@)" (3.7.1)

n<y

uniformly in the range y € [2™, x|, where 7y € (0, 1] is any fixed constant.

Now we prove Theorem 3.2.2. Recall that under the hypotheses in Theorem 3.2.2,
the multiplicative function a(n) satisfies conditions (i)—(iv). We shall again suppose
Ap € (0,1) throughout the proof. Define the strongly additive function f:N = R,

called the strongly additive contraction of f, by f(p) = f(p) for all primes p. Then

m

~ k ~ m—k
Sa () - Ay =3 (7)) Sat (7o) - 4@)" () - o)
n<x k= n<x
’ (3.7.2)
for every m € N. The term corresponding to k = m can be estimated directly using

Theorem 3.2.1. Hence, it remains to deal with

S atm) (7o) — A@)" ()~ F)) (373)
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3.7 DEDUCTION OF THEOREMS 3.2.1 AND 3.2.2

for 0 <k <m and ! =m — k. Note that

. k
<> am) |[fm) = A@)| | D (F0) — f)
n<lz p¥||n,v>2
. k
< Y e - el - el Y ale) |fn) - Al))
Pl PiSVE Pyt Lp) <a <
V1o 2 pytoep)tin
Since f(p¥) = O(v") for all p”, the last expression above does not exceed
[ klp Kls 3 k
O X X () X vt X a)|fn) - A)]
s<l pi<.. <ps<\/7l}l-‘y7-”.7-li;lEN p:llvin;:;; p11/1 7”%172,5””

If we write n = p{* -+ - p¥n’ with ged(n/, p1 - - - ps) = 1, then it is clear that

Fn) - A(@\k = ‘f(n’) — A(z) + Z flo)| < i (’;) Ft) - ’
Thus, the innermost sum of a(n)|f(n) ( )|k is

<a(p') - alpy) Zk: (z)

a=0

Zf(pi)

n<a/(pyLpL®)

where we have dropped the superscript of n for simplicity of notation. Since the right-
hand side of the above clearly vanishes if p; - - - ps > /2, we may assume p; - - - ps < /T
instead. Let \' := 1 — gy — logy A > po, and choose a constant max(1/2,1/00/N) <
S < 1, so that 1 — gg + 62N > 1. Let x, := x/(p1---ps) and y, = 2%. Then

Ts > AJx > preeops. I plte- p% > pp---pgys with given p; < ... < ps, then we use
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3.7 DEDUCTION OF THEOREMS 3.2.1 AND 3.2.2

the trivial estimate

fn) - A@)| «2°@(loga)® S aln)

n§a:/<p;1~--pgs) nSﬂU/(Plljl"'Pls/S)

7 p-1
€T 0 3x
<< AOé2O(a) (10g I)a ( Ijl .« . . VS) (log Ij]‘ .« .. I/S) ’
pl s pl S

Thus, (3.7.4) is

A 3 At
< a(pl ) a(ps ) <1Og o L ) /\a2o(k)l’ao(10g$)k-

oov1 | ooVs e .pVs
pl S

Y4 “Ps

Since a(p¥) = O((Ap®to0~1)¥) for all p, we have

Yiy L. Vs 3 p-1
St ()
pl .. .ps .. .Vs

PLPsys<p)Leps® <z
VlyeosVs>2

A 2z A Vs 3 Bs—1
< 200 3 prb s ( 190) (1_QO> (bg W—x)
pl s pl oo ZS

PLPsys <Py eps® <z
U,y Vs >2

20()

A\ < A )( 3z >ﬂ—1
kl1 Kl s
e v ...VSS — —_ logy— .
(pl...ps)l—go Z 1 (p} QO> p; 00 Pyt pls

ys<pyteps® <z
VlyeyVs 21

<

It is not hard to see that the proof of (3.3.3) also gives

A\ o p-1
> (ow) () < ™ERE
P 00 pV p eo—log,

21<p¥<z9 1
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3.7 DEDUCTION OF THEOREMS 3.2.1 AND 3.2.2

uniformly for all primes p and all 0 < z; < z5. Thus, we have

A\ A \” 3z, \7*
Z Vfll o y:ls (pl_g0> . (p—l_g()) <log p—yl x Vs)
1 S 1 s

Ys<py'-pss <zs
VlyeesVs 21

A\ A\ 3z p-1
O K s
<2 (l)(logg;) ! Z <p_}_go) (p—;—m) (log p—,,l — VS)

1 s
Ys <P11/1 “'P?S <zs
ViyeyVs 21

1273 Vs
A A (log(3zs/ys))" "
O(l Kl
S 2 ( )(lOg .CIZ') Z ( logp1 /\> T ( logp1 )\> lfgoflogpl A
Ps

p2pis<zy, \P2 s
V2, Vs 21

20([) (log m)(n+1)m+572 20(l)(10g x)5*1
- $5o(1—60)X/2(p1 .. ,ps)égx — x(1—50)’\'/5(p1 .. ,ps)ag/\"

where the penultimate inequality follows from the previous line together with the

observations that p.#”'* > X for all 2 < i < s, that 2(1+00)/2 > (p; ... p,)"*%  and

(2

that

L (14+60)/2

— S

SN
—oo—log, A / ! !
yi Q0—logp; A o y,\ _ (x(1—50)/2 . ) > 290(1=00)A /2(p1 .. .ps)@ )

P1---Ps

It follows that

ooVl OOV V1 Vs

p1 ps pl Y

Y 30\
Z I/fll . V:ls&(pl ) Oé(ps ) <10g T )

PLPsys<p;teps® <z
VlyeeyVs>2

20()

(o) Y

< 2= (=8N /5166 1)1
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3.7 DEDUCTION OF THEOREMS 3.2.1 AND 3.2.2

from which we deduce that

- k
> > vt N a(n) |f(n) — A(x)
P1< <P SVT p1-psys<pytps® <z y, ST
U1y Vs >2 pitpsfIn
' 1
O(m) o’o—(l—50)>\ /5 k+B8—1
S 2 AOCI (log x) Z (pl .. .p )1790+6(2))‘/
P1<...<ps<A/T 3
1 /
< S Aqz?0” 100N/6(gg )AL (3.7.5)

= sl

On the other hand, if p* ---p% < p;---pgys, then £(17%)/2 < 2 /(p ... p») < 2.
Thus, we can apply the asymptotic formulas for (3.7.1) with 9 = (1 — dp)/2 and
y = x/(p7*---p¥), in conjunction with the Cauchy—Schwarz inequality, to estimate

the inner sum in (3.7.4). As a consequence, we have

a 20(m—a)/\acm Y 00 Bs—1
L ———= B(x)? (%) (log %) :
(\/ﬁ) Py s s

n<a/(py"-ps*)

Inserting this into (3.7.4) shows that the sum

is

200m BN Crn alpt") -+ a(pl) . R o kxao oo )81
N TR <\/B< >+0< m;uw)) (log )

20\ a( 11/1) . a(p”s) X —
_ am s k o 51
iz oo B(z)> (1 +0 ( m)) 2% (log x)
QO(Z))\aCm a(pl/1> L a(pzs) 5 -
ml/2 ) pgiu1 . _pcsfous B($)2x O(log ‘T)/B 1'
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Note that
klq kls a(plljl) CU O'/(pgs)
Z Vl ”'Vs pooyl__'paous
v v S
pytpss <pr-psys !
VlyeenyVs >2
A\ A Vs
o) who L els AU
=2 Z ! Vs (p1—90> Pl e
pytps® <prepsys 1 5
Vlyeesy Vs2>2
200 AV AV
(p1 .. .ps)l—go , ' 20 ! 00
pll"'Plsls <ys
V1yeooyVs 21
20(1) ﬁL ()\/ 1 go)
ep— § I PV
(pl .. ,ps)lfgg P [kl;] 7 )
where

Lid¢) = Y nfe”
n=1

is the polylogarithm function of order —¢ and complex argument ¢ with |¢|< 1, where
¢ > 0 is any integer. For example, Lip(¢) = ¢/(1 —¢) and Li_1(¢) = ¢/(1 — ¢)*. The

function Li_,(¢) can be expressed in terms of the Eulerian polynomial A,(():

CA(Q)

Li_(¢) = A= oy

where

‘
4 )
Ai(Q) == Z< > ¢
=0 \J
is the /th Eulerian polynomial, and
0 g NSNS ,
=D (=1 (j+1—a)
J a=0 a

is the jth Eulerian number of size /. Combinatorially, it is known that, for every
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(>1

Y

14
<j> = #{7 € Sp: 7 has exactly j ascents},

where Sy is the set of all permutations of {1, ...,¢}. Using this combinatorial intepre-

tation one finds that A,(1) = #S, = ¢!. Since l; + -+ - + s = | < m, we have

HLLWJ (Mpi®) <
=1

by Stirling’s formula. Hence, we obtain

Pyt ps <pre-psys
VlyeoyVs>2

It follows that

- 2007kl ]! - - - [kl B 20() (llf e l{;)"‘ 90(1)
(p1---ps)te (pre-ps)t=@ 7 (pr-eopo)tT
Z ylih . Vf-cls Oé<p11/1) T CY(sz) < QO(Z)mHZ
1 Sopl QO T (py e p,)2(-e0)
. k
Sttt Y am)|f) - Aw)

Pyt pst <p1e-psys
VlyeoyVs 22

200\, C,m"
e PR

B(x)gx

n<x

pit,.psIn

7 (log x)ﬁ_l.

Summing the above over p; < ... < ps < 4/, we arrive at

SINND SIS

P1<e <Ps SV Pyt pl® <pr-psys
1/17...,V522

< QO(Z)AaCmm(”’l/WB(a:)gx"o (log z)*~1

20()

<
s!
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n<z
v
pits P In

1
> o

P1<...<ps<A/T

AaCrnm Y B(2)7 270 (log )%,



3.8 PROOF OF THEOREM 3.2.3 (SKETCH)

since gy € [0,1/2). Combining this estimate with (3.7.5), we obtain

. k
Y. > vt Y am)|f(n) - Al)
P1<..<Ps <@ pLophs <z . n<w
U1y Us >2 pitpetIn
200 i
< —‘)\aCmm(“_l/Z)lB(a:)ixao(10g z)P1,
s!

Therefore, (3.7.3) is bounded above by

o) (k—1/2)l 5 00 sy L :
200N, Crum B(x)2z7(log ) Zg Z (117...,&5)

s<U T Iyt le=l
l1,...,.ls€EN
< 2007, Com V' B(z) 227 (log ) T}(1)
< QO(Z)Cmm(H+1/2)ZB(£L‘)gS(Q]),
which allows us to conclude that
ml . k . m—k s i
> () Zat (7w - 4" (500 = F) "™ < Com ) (0

k=0 n<lz

provided that in addition, we also have 1 < m < B(z)Y 3. Inserting the above
estimate and the estimate for the term corresponding to k = m into (3.7.2) completes

the proof of Theorem 3.2.2.

Section 3.8

Proof of Theorem 3.2.3 (sketch)

Now we outline the proof of Theorem 3.2.3. The first step is to redefine f,(n) intro-

duced in Section 3.4. Again, let us suppose that Ag € (0,1) and that |f(p)|< 1 for
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3.8 PROOF OF THEOREM 3.2.3 (SKETCH)

all primes p. For every q € N we define

For each prime p we put

~

f)( = F(oo,p), ifp]|n,
fo(n) = R
—f(p)F(00,p), otherwise.

And as before, we set

fa(n) = H fp(n)”

p’llq
for any ¢ € N. In addition, let ¢, € N be the least positive integer such that c,g(x) €
Zlx], and let Qo > ¢,4]g(0)|> 1 be such that (3.3.17) holds. Then for each ¢ € N with
P~(q) > Qo we have Z,(g9) C (Z/qZ)* and p,(q) = #2,(g), where Z,(g) denotes the
zero locus of ¢ in Z/qZ. In particular, we have 0 < p,(q) < ¢(q), which implies that
0 < F(0o,q) < 1 and that |fg(n)|< 1 for all m € N.
Next, we need an analogue of Lemma 3.4.1. Let x be sufficiently large, and set

2= 29@/™ > @, so and v := log x/log z = m/§(x). Then we have
> J@)F(00,p) = Agy(a) + O(1)
Qo<p<z

by (3.1.1), (3.3.17), and the facts that p, is bounded on prime powers and that

129



3.8 PROOF OF THEOREM 3.2.3 (SKETCH)

>, Yo(p) < oo. It is easily seen that

flan) = Apg(x) = > flgm)+ > fp) = Y f(p)F(00.p) +O(1).

Qo<p<z p>z z<p<z
plg(n)

Note that

S F(0) P00, ) = Apy(w) — Agy(2) + O(1) < log (ﬂ i 1) |

z<p<z 5(:C)

Since 1 < g(n) < n% uniformly for all n € N, where d, := degg > 1, we have

> s < 5

p>z
plg(n)

It follows that

Za(n)(f(g(n))—flf,g(%))m=Za(n)( > fp(g(n))> +O(Eg(z;m)), (3.8.1)

Qo<p<z

k

Z folg(n))| -

p<z

m—1

ZO< )QOm 9 (mo(2) )" a(n)

n<x

Now we turn to the estimation of

Za(n)( > fp(g<n>>) = Y)Y ) fprpa(g(n). (3.8.2)
n<lx Qo<p<z

Qo<p1,.-pm <z n<x
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3.8 PROOF OF THEOREM 3.2.3 (SKETCH)

Let ¢ € N with w(q) < m, P~ (q) > Qo and P*(q) < z. Then we have

Yo am)fylgn) = folau®) Y am) =" flau®) Y > a).

n<w ab|Ry n<x ab| Ry cEZ4p(9) n<x
ablg(n) n=c (mod ab)

Recall that Z,(g) C (Z/qZ)*. Thus in place of Lemma 3.3.3, we need to input in our
analysis the information about the distribution of values of a(n) with n restricted to

reduced residue classes. By (3.2.1) and Lemma 3.3.2, the innermost sum is equal to

1 S(x)
b 2 ““”O(@(ab)uogaz)%)

n<x
ged(n,ab)=1

= @/\a(ab)x"o(log z)P (1 +0 (W)) +0 (@/\ax"o(log x)B_I_BO)
_ @(2()) Ao F(00, ab)z™ (log )7~ (1 +0 (m)) +0 (@/\aﬁ’o(log x)ﬂ—l—Bo)

= @Aax‘”’(log z)”! (F(UO’ ab) +0 <®)> ’

where A; := min(Ag, By). It follows that

S a()fy(g(n) = Ao <é1<ao, §)+0 (%)) +(log 2)P,

n<x

where

1(00,q) Z fq(a F(0.ab),
ab| Ry
Pyl
007 9 ‘fq
ab| Ry

It is clear that G, and 6’2 are both multiplicative in ¢q. Easy calculation shows that

~

Cr(00,0") = £(p)" F(00,p) (1= Foo.p)) ((—1)Flo0, )™ + (1 = Floo,p)) ™)
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3.8 PROOF OF THEOREM 3.2.3 (SKETCH)

for any prime power p”. In particular, we have él(ao,p) =0, |C~¥1(00,p”)|§ 1/4, and

~

G1(00,p”) > 0 when 2 | v. Moreover, we have that

~

(o) = 16 Floa) (1= Flon)) = L2040 (H22) 0 1),

and that

|G1(00,1")|< |F )" F (00, p) < py(p) {p(gg)) = pg(p)@ O (2%)

for all p” with p > @)y and v > 2. Thus, one may view p, as the multiplicative weight
instead in the estimates above. These observations allow us to conclude, by arguing

as in Section 3.5, that the contribution to (3.8.2) from G, is

AaCrB(2)% (xm (1 +0 (mlog(g]‘fg ‘zg) * 2))) +0 <—gg($)>) 7 (log z)7",

while the contribution from G is < Aa20(™ %0 (log z)#~1=4o(loglog z)™. Now that

we have the estimate for (3.8.2), we can bound E,(z;m) as before by combining it

with the Cauchy—Schwarz inequality. Hence, we have

A\ C,ym2

—ramm T o0(log )P
S@)y/Brg@) e

Ey(z;m) <

Carrying these estimates back in (3.8.1) completes the proof of Theorem 3.2.3.
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— Section 3.9
Proofs of Theorem 3.2.4 and Corollary 3.2.5

(sketch)

Now we outline the proof of Theorem 3.2.4, which borrows the ideas from the proofs of

Theorem 3.2.1 and [15, Theorem 1] with proper modifications. Let 0 < € < min(1, K),

1/v

and take z := z'/? and

xl/log(v+2), if ﬁ — 1’

xl/(elog(v+2)), if B 7é 17

where we recall that v < m when 8 = 1 and v = (loglogz)™o*2) when § # 1
as chosen in Section 3.6. Having made these choices, we have elog(v + 2) — oo as

x — oo in the case § # 1. Let

P ()= {p < w: /()< VB (@)}
Pr(r) = {p < w: e/ B(@) < 1)\ KV/B @)}
Pucle) = {p < 2 f()|> KV/B (@)},

and put Pk (x) := P, (z) UPF(x). We consider the strongly additive function

Yoot te >, f+ > )

pln pln pln
peEPe (x) pePT (z)N(2,2] PEPoo ()
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where we recall that €g; takes value 0 if 5 =1 and 1 otherwise, and define

A@= Y el
pEP: (x)
B= Y a2
pEPC ()
By hypothesis,
Ba)-Bw - Y eI~ o)

and so

‘Ae(aj) —A

@l —— Y a2 —o(cBWm).
er/ B*(x) o<a p7°
|f(p)|>eq/B*(x)
We expect that the distribution of f.(n;x) is close to being Gaussian with mean A(x)
and variance B(x) when x gets sufficiently large. In what follows, we shall restrict
our attention to the case 5 # 1, since the opposite case § = 1 is not only similar but

also easier. Looking back at the proof of Lemma 3.4.1, we find, for sufficiently large

x, that

> J®)Fo0p) = Ad) + 0 (/B ()) = Al@) + O (/B (@)
peP (2)N(Qo,7]
so that

fa)—A@) = S Lo+ Y f(p)+0(e B@:)), (3.9.1)

P (2)(Qo.z pln
PEPE (2)N(Qo2] PEPK (2)N(2w]

134



3.9 PROOFS OF THEOREM 3.2.4 AND COROLLARY 3.2.5 (SKETCH)

where we have used the hypothesis that f(n) = o(y/B(x)) for all n < 2 whose prime
factors p satisfy |f(p)|> K+/B*(x). This leads to an analogue of Lemma 3.4.1 in
which the second sum above plays the same role as w(n; z,w). In analogy to Lemma

3.4.1, we deduce from (3.9.1) that for every fixed m € N, one has

Y am)(fdniz) = Ax))" =) an) Yo L) | +O(Edy,zwim),

n<y n<y PEP (2)N(Qo,7]

uniformly for all sufficiently large = and any y > 1, where

E (y,z,w;m) = Z (a,n;,c) <e B(x))cZa(n) Z fo(n)| wr(n;z,w)?,

a+b+c=m n<y _
0<a<m PEPe (2)N(Qo,z]
b,c>0

and

wilmszw) = Y |f(p)l:
pln
PEPK (z)N(z,w]
To estimate the right-hand side of (3.9.2), one only needs to recycle the arguments

used in the proof of Theorem 3.2.1 and make slight modifications. For instance, the

estimation of .

> aln) Yo )

nsy PEP: (2)N(Qo,7]
is essentially the same as that of (3.4.1) given in Sections 3.4 and 3.5, except that we
use the inequality |f(p)|< e/ B*(z) for p € P-(x) in place of the bound f(p) = O(1)

throughout the argument. This way, we see that

R G CS)

p°°
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and that

Gl («VBE) " (a0 (25 () + 22 ) )

po°

for all p € P-(x) N (Qo, 2] and v > 2. Using these two estimates in place of (3.5.1)

and (3.5.2) and following the argument in Section 3.5, we obtain

m

Saw | X h0] a0 (m)) B oz

n<y PEP: (2)N(Qo,2]

= Aa(ttm + O(€)) B(z) 2y (log y)* ! (3.9.3)

uniformly for y € [z x], where 1y € (0, 1] is any given constant. On the other hand,

the estimation of E(y, z,w;m) reduces to that of

a

Za(n) Z fo(n)| we(n;z,w)b.

n<y PEP: (2)N(Qo,2]

The argument is essentially the same as that of (3.6.2) in the case § # 1 given

in Section 3.6. The only difference is that we now make use of the estimates that

f(p) < Ko/B*(x) for all p € Pg(x) and that

[SIN

Z a(p)|f(p)|y <<€B<JI>

o0
PEPK (z)N(z,w] p

for all ¥ > 1, in place of the estimates that f(p) = O(1) and that

Z a(p) )l = O(logv) = O(logloglog x),
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respectively. The second estimate can be easily seen by considering p € P (z) and

p € PH(x) separately. Indeed, one derives it by adding up the inequalities

> a(p)M<<(eB*(x))% > @<<(63*(x))%1ogv<<63(x)%

o0 J0
PEPe (z)N(z,w] p PEP (z)N(z,z]

and

> a2l < 5wy a2
pEPE (z)N(z,w)] pEPS (z)N(2,2]
<t Y apll

p<z
|f(p)|>eq/B*(z)

=o(e'B*(2)?) < eB(x)2.

One shows in this way that E(y,z,w;m) = O(edB(x)=2y?(logy)?~'). Inserting

this estimate and (3.9.3) in (3.9.2) and taking y = x yields

S(a)™ Y aln) (f(nsx) = A@)™ = (pm + O(e)) B(x) %

n<x

for every fixed m € N and all sufficiently large x, where the implied constant in the
error term is independent of e.

To complete the proof of Theorem 3.2.4 for the case § # 1, it is sufficient to show

S@) ™S a(n)|f(n) — fulnsa)|"= O (eB*(2)%) (3.9.49)

n<x

for every given € € (0,1) and m € N, where the implicit constant in the error term
is independent of €. Since the case where m is odd follows from the case where m is
even by Cauchy—Schwarz, we need only to consider the latter case. The proof of this

case is largely the same as that of [15, Lemma 2], except for the slight complication
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in the possible case § € (0,1). When m is even, we have

T alf) — L= S@ 7 a3 ) Sw),

n<x n<x D1y Pm |0

which, after grouping terms according to the distinct primes among p1, ..., p,,, becomes

DD DD (km ks)f(pl)’“---f(ps)’“s S a). (3.95)

s<m p1<...<ps<z ki+--+ks=m n<lz
p1,,ps€PF (z) K1y ks€EN p1-s|n

By (3.3.4) we have

«Q 2\
Z a(n) = Z a(q) Z a(n') < Aa Z q&qo) (log%)

n<z q<zx n'<z/q q<z

Pl"'Ps|n Rq:pl"'ps gcd(n/7q):1 Rq:pl"'ps

Appealing to (3.3.3) we derive

P ) e E 2 E )

q<z <z Vz<g<lwz
Rg=p1--ps Rq*m “Ps Rq=p1-ps
s+5—2
1 B 1 IOg Zlf)
ng ool/ 1—00
i=1 v=1 Di \/E)

alp: og x)sHhA2
= (logyc)'&1 H ( ;fj) —Hﬂo(pi)) + %'

These estimates together with (3.3.4) imply that (3.9.5) is < ¥ + 39, where

(0o

7,

R IND DI DR (R VTR R

s<m p1<..<ps<z ki+-+ks=m
D1, Ds€PT (z) FirksEN

Sy = VoS >y > (klk) [F(p1)* - f(ps)

s<m p1<...<ps<z ki+--+ks=m
P1,-psEPS () K1oks€N

i=1
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Since f(p) < K+/B*(x) for all p € PX(x), we have

(log z)™ !

m(2)"B*(z)% =0 (B*(m)%) <L eB*(x)2.
To bound X3, we observe

|Fp0) - flps)'s| < B ()" | f(p1) -+ f(ps)].

Thus, we have

IESY B*(x)%sé > (a(p)lj;(%)' +wo(p)) > <k1m k>

s<m p<z k1+-+ks=m
pEPQL(m) k1,....,ks€N
% m—s 1 1 " s m " m
=Y E@E L VED) Y (") < e
s<m ki+-+ks=m

Combining these estimates completes the proof of (3.9.4) in the case § # 1.

As we mentioned in Section 3.2, Corollary 3.2.5 is an immediate consequence of
Theorem 3.2.4 when f is strongly additive. The transition to the general additive
case is then accomplished by applying the following analogue of [54, Theorem B]. And

this is the only place where we need to make use of characteristic functions.

Lemma 3.9.1. Let a:N — R be a multiplicative function, and suppose that there
exist absolute constants Ag, 5,00 > 0, U9 > 0, 0o € [0,1) and r € (0,1), such that
a(n) satisfies the conditions (i)—(iv). Let f:N — R be an additive function, and
denote by f the strongly additive contraction of f. Suppose that B(x) — oo as
x — 00. Then Xy(n) = (f(n) — A(N))/+/B(N) possesses a limiting distribution
function with respect to the natural probability measure induced by « if and only if

Xn(n) := (f(n) — A(N))/~/B(N) does, in which case they share the same limiting
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distribution function.

Proof. As before, we shall assume Ay € (0,1). For each N € N, the distribution

functions of Xy (n) and Xy(n) are given by

n<N
Xn<V

respectively. We have to show that ® (V') converges weakly to a distribution function
as N — oo if and only if d ~ (V) does, in which case they converge weakly to the same

distribution function. Note that the characteristic functions of Xy(n) and Xy(n) are

o (t) = S(N)™H Y a(n)e

n<N

respectively. By Lévy’s continuity theorem [56, Theorem I11.2.6], it suffices to show

lim (o (t) — (1) = 0 (3.9.6)

N—oo

for any given ¢ € R. To prove this, let us fix t € R and let € € (0,1/(2[t|+1)) be
arbitrary. Denote by J.(NN) the greatest integer not exceeding /N such that the
inequality |f(n)|< ey/B(N) holds for all 1 < n < J(N). Since B(N) / oo as
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N — o0, we have J.(N) /oo as N — oo. By (3.3.4) we have

on () = En ()] < S(N)™ Y~ a(n) fexp (@tM> - 1‘

= B(N)
=S(N)™ > ala)|exp (itM> - 1‘ > ab)
a<N B(N> b<N/a
a squareful b squarefree
ged(b,a)=1

< SN AN Y ala) <log %)51

ac’o
a<N
a squareful

e@<ﬁﬂ@;1@@)_4_
B(N)

From (3.1.1) and (3.1.3) it follows that

> Wiy
a sc;lu:a%eful P v=2

is absolutely convergent for s € C with R(s) > max(gg,7) + 0o — 1. Thus

— afa) a(p”)
c(9) = Z ag—a = H (1 + Z V((00—6)> < o0
a=1 a p v>2 p
a squareful
for any § < 1 — max(gg,r). Since
itM < 2¢lt|< 1

B(N)

for all a < J.(N), this implies

3 3N\
ala) <log )
a’o a

a<Je(N)

a squareful

< €|t|(log N)P1.

em<ﬁﬂ@;1@@>_l
B(N)
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Now fix 0 < § < 1 —max(gg,r). By partial summation we have

a(a) ~1 ala) s
> o :c<o>_/ Ll Y S =) o)
a<x z a<t
a squareful a squareful

when z is sufficiently large. It follows that

-1
S (1 2) " oy ()

Je(N)<a<N B(N)
a squareful
a(a) 3N\t
<2 —— | log —
N
Je(N)<a<N
a squareful
N p-1
3N
= 2/ <log —) d Z a(a)
Je(V) t e
a squareful
N 3N\
=0 (N +0((logN)""J(N)°) +o / 10 (log T) dt
«(N)

for sufficiently large N. By a change of variable we see that

N AN A2 log(3N/Je(N))
/ 10 (log T) dt = (3N)™° / OHP=2 4t
Jo(N) 1

(N og3

=09 (57) (i)

< (log N)P=2J.(N)~°.

Hence, we have

3 3N\
ala) <log )
ac’o a

Je(N)<a<N

a squareful
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for sufficiently large N. Gathering the estimates above, we obtain

on(t) — Pn(t) < elt|+o (J(N)°)

for sufficiently large N, where the implicit constants are independent of ¢, € and N.

From this estimate we infer that

limsup [pn(t) — on(t)| = O(elt|),

N—oo

where the implicit constant is independent of ¢ and e. Since € € (0,1/(2]t|+1)) is

arbitrary, we obtain (3.9.6) as desired. O

Section 3.10

An Application to the Ramanujan 7-function

Let 7(n) be the Ramanujan 7-function. The goal of this section is to prove Theorem
1.2.1. In fact, we shall show that this result follows from Corollary 3.2.5 in combi-
nation with Lemma 3.9.1 and [19, Lemma 7| without difficulty. In comparison to
Elliott’s probabilistic approach, our approach enables us to get around some of the
complications resulting from the analysis of 7(n).

To illustrate this, let a(n) = 7(n)?/n'!, and define the additive function f(n) by
f(p¥) = log/a(p¥) if a(p”) # 0 and f(p”) = 0 otherwise, where p” is any prime
power. It is easy to verify, using the facts about 7(n) discussed in Section 3.1, that
a(n) satisfies conditions (i)—(iv) with any fixed A4g > 0, =1, 09 = 1, ¥y = 0, and
any fixed gp € (0,1) and r € (1/2,1). Moreover, we have a(n) < d(n)? by Deligne’s
bound. To prove (1.2.7), it suffices to demonstrate that the limiting distribution of
(f(n) — A(x))/+/B(x) with respect to the natural probability measure induced by
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« is the standard Gaussian distribution, where it is clear that A(z) = A,(x) and
B(z) = B;(x).

Let us consider the strongly additive function fo(n) defined by fu(p) = log/a(p)
if p ¢ Ey and fo(p) = 0 otherwise, where Ey := {p > 2:a(p) < exp(—2+/loglogp)}.
Denote by Ag(z) and By(z) the expected mean and variance of fy(n) weighted by
a(n), respectively. It can be shown [19, Lemma 7] that B(z) =< loglogz. Since the

inequality t[logt|< 4/t holds for all ¢ € [0, 1], we have

Z a(p)|f§'fp>| < Z —”?;(m < Z%exp (—Wloglogp) < 00.

p<z p<z p>2
pEEy peEy

It follows that Ag(x) = A(x) + O(1). A similar argument shows that By(z) =
B(z) + O(1) =< loglogz. Thus, fo(p) = O(By(p)'/?) for all p, which shows that
fo(n) satisfies the hypotheses in Corollary 3.2.5. Hence, the limiting distribution of
(fo(n) — A(x))/+/B(z) with respect to the natural probability measure induced by «
is the standard Gaussian distribution.

To complete our argument, let ]? be the strongly additive contraction of f. Then

fo(n) > f(n) for all n € N. Moreover, Deligne’s bound and the fact that 7(n) € Z

for all n € N imply that —(11logp)/2 < f(p) < log2 whenever a(p) # 0. Since

Za(py) S@+Z(V+1)2:Oé(p)+0(i)7

v v 2
Vo1 p p v>2 p p p
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we have

S@) 1> am) (folm) = Fin)) = S@)" 31O aln)

n<lx p<lx n<lx
pEFEy p|n
= S(@) " Y I _al®) D a@)
p<w v>1 n' <z /p¥
pEEy pn’
o v
< 5@ Y13 L
p<z v>1 p
p€Eko
1
<Y a2l o (Z ng) < 1.
p<z p p>2 p
pEEo

~

This estimate is sufficient for us to conclude that the limiting distribution of (f(n) —
A(x))/+/B(x) with respect to the natural probability measure induced by « is also

the standard Gaussian distribution. By Lemma 3.9.1, the same is true for (f(n) —
A(z))/+/ B(x).
Remark 3.10.1. The above argument can be easily modified to yield similar results

for the Fourier coefficients of elliptic holomorphic newforms of weight at least 2. The

reader is referred to [20] for examples of such results.

Section 3.11

The Number of Prime Factors of p(n)

Recall that for each n € N, Q(n) denotes the number of prime factors of n, counting

multiplicity, and that Euler’s totient function ¢(n) may be defined explicitly by

on) i=n ][ (1 - %) |
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We are interested in the distribution of Q(p(n)) weighted by certain multiplicative
functions. And the goal of this chapter is to prove Theorem 1.2.2. As promised, we

shall actually prove the following more general result.

Theorem 3.11.1. Let a:N — R be a multiplicative function, and suppose that
there ezist absolute constants Ay, 5,00 > 0, ¥g > 0, 0o € [0,1) and r € (0,1), such
that o(n) satisfies the conditions (i)—(iv). Furthermore, suppose that a(p) ~ Bp®0~1
for all but a subset E of primes p, where #(E N [2,x]) = o(x(loglog )~ /(log x)*)

as x — 0o0. Then

:Ch_)rgo S(x)~! Z a(n) = (V) (3.11.1)

Q(p(n))<B(loglog x)?/2+V 4/ B(loglog )3 /3

for every V e R.

Proof. Let us first determine the weighted mean A(z) and variance B(x) of the ad-
ditive function f(n) = Q(¢(n)). The unweighted mean and variance of Q(¢(n)) are

provided by Lemmas 2.3 and 2.4 from [25]:

Z Q=1 = 1(log log 7)* 4+ O(loglog z), (3.11.2)
p<z P 2

Qp—-1)2% 1
Z % = g(log logz)* + O ((loglog z)?) . (3.11.3)
p<z
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Since a(p) ~ Bp°~! for all p ¢ E, it follows from (3.1.4) and (3.11.2) that

Qp—1)
po

A(z) =) alp)

p<w

Qp-—1 lo
Zza(p)(pTo)JrO > iﬂp(loglogp)i90

p<z p<x
p¢E pEE

> —Q(pp_ Do <Z —Q(pp_ 1)) oY loip(log log p)*

p<w p<z p<z
peEE

VRS

1
(loglog z)* + O g &P (log log p)°
2<p<z
peEE

= (1+0(1))

Put E(z) := #(EN[2, z]). By hypothesis, we have E(z) = o(z(loglog 7)*~" /(log z)?)

as x — 00. It is easily seen by partial summation that

log p log x v logt
Z (loglog(p + 1))" <« E(x) (loglog x)” + E(t)t—2(log log t)” dt
2<p<lz 3~
pEFE
=0(1).
Hence, we obtain
A(z) = (1+ 0(1))g(log log 7)?. (3.11.4)
Similarly, since
1 2 1 2 v log t)?
Z M(log log(p +1))% < E(x)( 08 ) (loglog x)" —i—/ E(t) ( ng ) (loglogt) dt
2<p<z z 37 t
peE

147



3.11 THE NUMBER OF PRIME FACTORS OF ¢(n)

we have by (3.11.3) that

By =Y a2V 0(1))§(10g log z)°. (3.11.5)

00
p<z p

Next, we estimate the tail of the weighted variance of Q(p(n)) over the primes p

for which Q(p — 1) are large. It is known [26, Corollary 1] that
#{n <z:Qn) >T} <27 Tz logx (3.11.6)
uniformly for all x > 3 and T" > 1. We have by (3.1.4)

Z oc(p)Q(p—_l)z < (loglog x)” Z )’

po'() n
p<z n<x
Q(p—1)>T Q(n)>T

uniformly for all x > 3 and 7" > 1. The sum on the right-hand side can be easily
shown to be O(27TT*(log z)*) by using (3.11.6) and partial summation. The details

were worked out in the proof of [25, Theorem 3.1]. It follows that

Q(p —1)?
Z a(p)# < 27T (log z)*(log log ).
p<zx p ’
Q(p—1)>T

Taking T' = 8log log x, we have

Z a(p)mp—_1)2 < (logz)~3/? (3.11.7)

P
Q(p—1)>8loglog x

for all z > 3.
Although we are tempted to apply Corollary 3.2.5 directly to Q(p(n)), it is not
legitimate to do so, because the value of Q(p — 1) can be as large as logp. To

circumvent this problem, we consider instead the strongly additive function fy(n)
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defined by fo(p) = Qp—1) if Q(p—1) < 9loglog2p and fy(p) = 0 otherwise. Denote
by Ap(z) and By(z) the expected mean and variance of fy(n) weighted by «a(n),
respectively. In order to show that Ag(x) and By(z) are close to A(x) and B(x), we
need only an upper bound of the correct magnitude for the unweighted variance of

Q(p—1). By [25, Lemmas 2.1, 2.2] we have

log1
Sop-1=""20 10 (),
log x log =

p<z

ZQ(p e z(loglog r)? Lo (xloglogx)

log x log x

p<z

Now simple calculation shows

— Z (Q(p — 1) — loglog z)* = O(loglog ).

m(x) =

Hence, we have

1 9
- Q(p — 1) — loglog 2
@) E (Q(p — 1) — loglog 2p)
p<zx
1 1
— logp)? + —— Q(p—1) —logl 1))?
<<7T(x) (log p) +7T($ E (Qp —1) —loglogz + O(1))
p<Vz Vr<p<z
< loglog z,

which is precisely what we need. (Halberstam [33, Theorem 3] showed that

e > (wlp—1) —loglogz)* = (1 + o(1)) loglog z.

His method may be adapted to yield the same asymptotic formula with Q(p — 1)

in place of w(p — 1), but the upper bound that we just derived is sufficient for our
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purposes.) From this estimate we deduce at once

log1
3 Qp —1)? <« L9808

log x
p<z
Q(p—1)>9loglog2p
By partial summation we obtain
Q(p —1)?
> 2-1 o (loglog )2, (3.11.8)
p<z p
Q(p—1)>9loglog2p
Q(p —1)*
Z Sp =17 < loglog z, (3.11.9)
= ploglog 2p
Q(p—1)>91log log 2p
Q(p —1)2
3 -1 o = (3.11.10)
o log log 2p log

Q(p—1)>9loglog 2p

Thus, it follows by (3.11.8) that

B(x) = Bo(z) = Y. al)——"

p<z
Q(p—1)>9loglog 2p
Q(p — 1)?
< Z M +o0 ((log log x)S)

p<z
Q(p—1)>9loglog 2p

=0 ((log log ac)3) ,

where the error o((loglogz)?3) on the second line arises from the contribution from
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the primes in . Analogously, we have by (3.11.9) that

A(z) — Ao(z) = Y. al)——

p<z
Q(p—1)>9loglog 2p

Q(p—1)°

——— 4+ 0(1
< l;w ]ologlog2p+ (1)
Q(p—1)>9loglog 2p

< loglogz.

(3.11.11)

Applying Corollary 3.2.5 to fy(n), we hence conclude that the distribution of fy(n)

is approximately Gaussian with mean S(loglogx)?/2 and variance (3(loglogx)3/3.

According to Lemma 3.9.1, it suffices to show that the distribution of the ad-

ditive contraction f(n) of f(n) = Q(p(n)) is approximately Gaussian with mean

B(loglogz)?/2 and variance B(loglogx)3/3. To this end, we show that f(n) and

fo(n) are close on average. It is clear that

f(n) = foln) = > Qp—1).

pln
Q(p—1)>9loglog 2p

Note that

S(a)™' Y aln) > Qp-1)

n<wz pln
Q(p—1)>9loglog 2p

=s@ Y - )Y am)

p<z n<zx
Q(p—1)>9loglog 2p p|n
—S@)7 Y -DaG) Y a)
p’<z,v>1 n'<z/p"”
Q(p—1)>9loglog 2p pin

v -1
< (logz)*7 Z Qp — 1)M (1og 3_x) .

ooV v
pY<zv>1 p p
Q(p—1)>9loglog 2p
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To proceed, we split the last sum above into sums over the ranges p” < \/x, \/z <

p’ <z with p < (yo)17% and /r < p” < x with p > (y/2)17%. The first sum is

y 2\ A1 a(p”
) Q(p—n%(log?’—y) <log™ Y ap-n)y L)

pY<Az,v>1 p p<+T v>1
Q(p—1)>9loglog2p Q(p—1)>9loglog 2p

=(logz)”™ Y alp)———

p<vz
Q(p—1)>9loglog 2p

_ a(p”
+ loga)* Y logp - 8
P v>2 p

< (logz)’ ' loglog x,

by (3.1.3) and (3.11.11). The second sum is

Vr<p’<z,w>1

p<(v/z)'~20
Q(p—1)>9loglog 2p

v -1
a(p 3r
= E Q(p — 1) E p(UOV) <10g p_l’>
p<(y/x)1—e0 log,, v/z<v<log, =
Q(p—1)>9loglog 2p

(logx)

RGP VR
p<(Va)t—eo
Q(p—1)>9loglog 2p
(log )P~ Z Q(p—1)°
(V)!—eo log log 2p

<

p<(va)'~o0
Q(p—1)>9loglog 2p

< (logz)P~2,

by (3.3.3) and (3.11.10). Finally, by (3.1.4) and (3.11.7) (with a(p) = p°°~! for all

152



3.11 THE NUMBER OF PRIME FACTORS OF ¢(n)

p), we see that the third sum is

Vz<p'<z,w>1

p>(v/z)1720
Q(p—1)>9loglog2p

Q(p—1
< (log z)™>5=10) (Jog log )% Z Qp-1

p<z p
Q(p—1)>8loglogx
Q(p — 1)?
< (log x)maX(ﬁ*l’O) (loglog :U)ﬂo*l E (pp )

p<z
Q(p—1)>8loglogx

< (log log x)'ﬁo—l (10g I)max(ﬁ—l’o)_3/2

< (logz)?t.
Combining these estimates, we obtain

S(z)™! Z a(n) Z Qp—1) < loglogz,

n<x pn
Q(p—1)>9loglog 2p

which, together with (3.11.12), implies that

@
O
I

g
Q
S

=

(n) — fo(n)) < loglog z = o ((loglog x)3/2) :

This allows us to conclude that just like fy(n), the distribution of f(n) is also approx-

imately Gaussian with mean 3(loglogz)?/2 and variance $(loglogz)®/3. And so the

same can be said about f(n).

Remark 3.11.1. It is possible to adapt the proof of [25, Theorem 3.2] to obtain an

analogue of Corollary 3.11.1 for w(¢(n)). This essentially requires a weighted version

of the Turan—Kubilius inequality. It is not hard to show, by modifying the proof of

the classical Turdan-Kubilius inequality, that if f:N — C is an additive function, and
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if a:N — R is a multiplicative function satisfying the conditions (i)—(iv), then

S@) Y a(n) | f(n) — A*(2)* < B (x) (3.11.13)

n<x

for all x > 1, where

A*(z) =Y oz(p”)F(amM%’

pv<w
F@IP (, _ logp” T
poov log 3z '

B¥(z):= ) a(p")

p¥ <z

In the case 8 > 1, the factor (1 — logp”/log 3x)?~! in the expression of B#(z) above
may be removed. But in the case 8 € (0,1), this factor is < (logz)'® when p”
is close to x, so some care needs to be taken in practice. To ensure satisfactory
estimates, one may suppose further in this case that a(p”)/p?" decays suitably fast
as p” grows, so that the tails of A% (z) and B#(z) only contribute negligible amounts.
For instance, one may assume that a(n) satisfies the same conditions as in Theorem
3.2.2, in addition to the hypothesis that a(p) ~ Sp®~! for all but a subset E of
primes p, where #(EN[2, z]) = o(z(loglog z)?~% /(log 2)3) as # — oco. Then one may
show, by arguing as in the proof of [25, Theorem 3.2] and employ Corollary 1.2.2 and
(3.11.13), that (1.2.10) also holds for every V' € R with w(¢(n)) in place of Q(¢(n)).

The interested reader can fill in the required details without much difficulty.

Section 3.12

Concluding Remarks

Although in the present work we only focused on the subclass M* of multiplicative

functions, it is also of interest to consider weight functions «(n) which satisfy certain
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Landau—Selberg—Delange type conditions. Given more information about a(n) and
its associated Dirichlet series F(s) = > >~ a(n)n~*%, better results are obtainable in
some circumstances. Below we give a brief description of the method in the special
case where F'(s) is close to an integral power of the Riemann zeta-function ((s).

For a complex number s € C, we write 0 = R(s) and t = I(s). Let a:N — Rxq
be a multiplicative function whose Dirichlet series F'(s) = Y >° | a(n)n~° is absolutely
convergent for s € C with o > oy, where oy > 0 is an absolute constant. Suppose
that there exist absolute constants § € N, 0 < 6y < 0¢g, B > 0, and 0 < § < 1, such
that Hg(s) := F(s)((s — 0o + 1)7? has an analytic continuation in the half plane
o > 6y with

lim F(s)(s — a0)” >0,

S—00

and such that |Hg(s)|< B(1 + [t|)}7° for all s € C with ¢ > 6. It is clear that
F(s) has (absolute) abscissa of convergence 0. Adapting the argument used in the
proof of [38, Lemma 2.1] or [56, Theorem I1.5.2], one can show that there exists some

constant €y > 0 such that

. B—1 k-1
S(z) = 1 Ress—g, (M> — 27°(log )P ~1 Z Cik 14(5) +0 (B.CIZQ)
k=

o s—op+1 = (log x)*

(3.12.1)

uniformly for all x > 3 and 6 € (¢ — €, 0p), where

1 d* [(F(s)(s—o00)®
= g g ()|
- (=1)" (o0 — 1)

(B—k—1)lgratt

and the implicit constant in the error term depends at most on 3, 0, 0y, 0, €g. Notably,
one gains an asymptotic for S(x) with a power-saving error term uniformly in B, in

contrast to what is provided by (3.3.4). Furthermore, suppose that there exists an
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absolute constant A > 0 such that a(p”) = O ((Ap7~!)") for all prime powers p”. Let

F(s,a) = H 1— (Z oz(p”)p_”s>

pla v=0

for s € C with ¢ > 0y and squarefree a € N. When s = oy, this definition coincides
with the one introduced in Lemma 3.3.3. As in the proof of Lemma 3.3.3, it is not

hard to show that

2
a(p a(p 1
F(s,p) = _]Ss) +0 ( ;23 + pQ(U_%H)) (3.12.2)

for all s € C with o > 6y and all sufficiently large p. In addition, we observe that

HZ o | [ TI et

a, v=0 p|a, v=1

9] Oé(
Z n
n=1
aln

11> e 11> awp™ | = F(s)F(s,a)

pla v=0 pla =1

for s € C with ¢ > 0y and squarefree a € N. Applying (3.12.1) to the above
Dirichlet series expansion of F(s)F(s,a) and using (3.12.2) to obtain upper bounds
for Hg(s)F(s,a) uniformly in o > 6, we see that there exist constants e € (0, 1),

Qo > 2, and d;, € R, where 0 < j < k < f3, such that

B-1 k
/“LO(ﬁ)F(O-(]? ) B—1 B 1 F(j 0'0 CL
E an) = —————2(logx + 27°(log z) E dj
= (n) (B—1)'og " ) == logx
aln
+ 0 (B2°@®) g7~ (1 /q)?) (3.12.3)

uniformly for all x > 3, 6 € (09 — €,0¢) and square-free a € N with P~(a) > Q,,

where FU) (g, a) is the jth order derivative of F(s,a) with respect to s evaluated at
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s = 0p. Again, one may compare this result with Lemma 3.3.3.

Now, if f: N — R is a strongly additive function with |f(p)|< M for all primes p,
where M > 0 is an absolute constant, and if 0 < hy < (3/2)%/3 is fixed but arbitrary,
then we obtain, by using (3.12.3) as a substitute for Lemma 3.3.3 and arguing as

before with the adoption of the technique used in [38, Section 4.2], that

M(z;m) = C,B(z) % (Xm +0 (%))

uniformly for all sufficiently large = and all 1 < m < ho(B(x)/M?)Y/3, provided that

B(z) — oo as © — oo. Analogously, let f:N — R is strongly additive such that

f(p) = O(4/B(p)) for all primes p, B(x) — oo as x — oo, and

p<z
[f(p)[>e/ B(x)
for any given ¢ > 0. Then M(z;m) = (pm + o(1))B(z)% for every fixed m € N.
These results supplement Theorems 3.2.1 and 3.2.4. It may be worth pointing out
that in the proofs of these results one can simply take z = x'/? with v being a suitable
constant multiple of m. We invite the reader to fill in the details.
One of the key ingredients in the proof of Theorem 3.2.1 is an asymptotic formula

for

> _a(n),

n<x
dln

which is provided by Lemma 3.3.3. More generally, let A(z) = {a,}n<. be a non-

decreasing sequence of positive integers, and suppose that

Ada(z) = a(n) = p(d)S(z) + ra(z) (3.12.4)

dan
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for square-free integers d € N, where p:N — [0, 1] is a multiplicative function, and
rq¢(x) is a remainder term which is expected to be small for all d or small on average
over d. Here, p(d) can be viewed as the density of the set {n € N:d | a,, } with respect
to the probability measure induced by . In this sieve-theoretic setting one can derive,
without much difficulty, an analogue of [30, Proposition 4]. It may be of interest to
determine if such an analogue can be used to obtain general weighted Erdés—Kac
theorems for various interesting sequences {a, } studied relatively recently, including
9(pn), ¢@(n), the Carmichael function A(n), and the aliquot sum s(n) := o(n) — n,
where g € Z[z] is an irreducible polynomial, p,, is the nth prime, and A\(n) denotes the
exponent of (Z/nZ)* (see [33], [25, 23] and [46]). Besides, the same approach may
also be adapted to prove results of weighted Erdés—Kac type for short intervals as
well as in the function field setting. We will explore these and other related problems

in future research.
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