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Elements: the dawn of arithmetic

Let N = {1, 2, 3, ...} be the set of positive integers. There are two basic
binary operations on N: addition “+” and multiplication “×”, the latter of
which leads naturally to the notions of divisibility and factorization.

Let P ⊆ N be the subset consisting of all n > 1 for which there are no
positive integers a, b > 1 such that n = ab. The elements of P are called
primes or irreducibles. It was known to Euclid that every n > 1 can be
written as a product of finitely many primes.

In his treatise Elements, Euclid demonstrated two important properties of
primes:

1 #P =∞.

2 If a, b ∈ N and p ∈ P are such that p | ab, then p | a or p | b.
Property 2 is commonly used as the definition of prime elements of a
commutative ring, while the one given above often serves as the definition
of irreducible elements.
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The missing element

Euclid proved the existence of prime factorization. Although he was
probably aware that the prime factorization of a positive integer > 1 is
unique apart from rearrangement of its prime factors, he did not try to
state it explicitly, let alone write down a proof of it. Nor did many
mathematicians that came after him, who confidently took the idea of
unique factorization for granted. Gauss seems to be the first to provide a
precise statement of unique factorization of N as well as a rigorous proof.

Theorem 1.1 (The fundamental theorem of arithmetic)

Every positive integer n > 1 admits a prime factorization which is unique
up to the order of its prime factors.

Gauss’ proof of the fundamental theorem given in his book “Disquisitiones
Arithmeticae” is based on Property 2 discovered by Euclid. Arguably,
Euclid could have proved this theorem if he had tried.
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Unique factorization in Z

The fundamental theorem can be reformulated as the following for the ring
of rational integers Z := ±N ∪ {0}.

Theorem 1.2 (Unique prime factorization in Z)

Every n ∈ Z \ {0,±1} admits a prime factorization n = p1 · · · pk with
p1, ..., pk ∈ ±P for some k ∈ N, and this factorization is unique up to the
order of the prime factors p1, ..., pk and up to unit factors ±1.

The uniqueness part says that if n = p1 · · · pk = q1 · · · q` are two prime
factorizations of n, then we must have (1) k = ` and (2) there exists a
rearrangement qj1 , ..., qjk of q1, ..., qk such that qji = ±pi for all 1 ≤ i ≤ k.

The notion of prime factorization extends naturally to that of factorization
into irreducible elements in a general integral domain.
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Irreducible factorization in a domain

Let D be a domain. A nonzero nonunit element of D is irreducible if it
cannot be written as a product of two nonunit elements.

A domain D is a unique factorization domain (UFD) if every nonzero
nonunit element of D can be written as a product of finitely many
irreducibles uniquely up to the order of the factors and up to units.

Example 1 (Examples of UFD)

1 Principle ideal domains (PIDs): Z, Z[i], Z[e2πi/3], Zp, K[x] and
K[[x]] with K a field, etc.

2 The polynomial ring D[x1, ..., xk], where D is a UFD.

In a UFD, an element is prime iff it is irreducible. So any factorization into
irreducibles in a UFD is a genuine prime factorization.
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Lamé’s dream

In 1847, Lamé, who had solved Fermat’s equation x7 + y7 = z7, presented
to the Paris Academy an outline of what he believed was a complete proof
of Fermat’s Last Theorem. His proof rests on the assumption that the ring
of integers Z[e2πi/p] of any cyclotomic field Q(e2πi/p) is a UFD.

Liouville: “I’m skeptical. The UFD assumption is unjustified.”

Cauchy: “Looks promising. I’m also very close to having a solution based
on a similar idea.”

Wantzel: “I have a proof that Z[e2πi/p] is a UFD. You see, though I only
considered p = 2, 3, the proof generalizes easily.”

Cauchy: “Hold on, your argument doesn’t work when p ≥ 5.”

Liouville: “Okay guys. I just read an article written by Mr. Kummer which
confirmed the failure of unique factorization in Z[e2πi/23].”

Steve Fan (MPIM Bonn) Number Theory Lunch Seminar October 22, 2024 6 / 32



Arithmetic of Z Unique factorization Elasticity of a quadratic order
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Dedekind’s ideal theory

We now know that Z[e2πi/p] is a UFD iff p ≤ 19, thanks to Montgomery (1971)
and Uchida (1971). A simpler example of a non-UFD is Z[

√
−5], the ring of

integers of Q(
√
−5). In this domain, we have

6 = 2× 3 = (1 +
√
−5)(1−

√
−5),

where 2, 3, 1 +
√
−5, and 1−

√
−5 are all irreducible but not prime!

Nonetheless, Dedekind showed that the nonzero proper ideals of a number ring do
possess unique factorizations into prime ideals.

More precisely, every nonzero proper ideal I of the ring of integers

OK := {α ∈ K : f(α) = 0 for some monic f ∈ Z[x]}

of a number field K admits a factorization I = P1 · · ·Pk unique up to the order
of the prime ideal factors P1, ..., Pk ⊆ OK .

For instance, we have in Z[
√
−5] that

(6) =
(
2, 1 +

√
−5
)2 (

3, 1 +
√
−5
) (

3, 1−
√
−5
)
.
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Measuring unique factorization: class group

For a number field K, let IK be the collection of nonzero fractional ideals
of OK and PK the collection of nonzero principal fractional ideals of OK .
They become abelian groups under multiplication.

The ideal class group Cl(K) of K is defined by Cl(K) := IK/PK .

We define the class number h(K) of K by h(K) := #Cl(K).

It can be shown that h(K) <∞ and that

h(K) = 1⇐⇒ OK is a PID⇐⇒ OK is a UFD.

So Cl(K) measures how far OK is from being a UFD.

Since h(Q(
√
−5)) = 2 and h(Q(e2πi/23)) = 3, Z[e2πi/23] is farther from

being a UFD than Z[
√
−5].
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Searching for UFOs

Let Kd = Q(
√
d) be a quadratic number field, where d ∈ Z is square-free.

For imaginary quadratic fields (d < 0), it was conjectured by Gauss (1801)
and proved by Heegner (1952), Baker (1966), Stark (1967), et al., that

h(Kd) = 1⇐⇒ d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

Little is known about real quadratic fields (d > 0). It is an open conjecture
that h(Kd) = 1 for infinitely many d > 0. In fact, it is not even known if
there are infinitely many number fields with class number 1.

In general, pinpointing UFDs is hard!
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Introducing elasticity

We have seen that Z[
√
−5] is not a UFD. For the factorization

6 = 2× 3 = (1 +
√
−5)(1−

√
−5),

uniqueness fails only halfway, since both factorizations contain exactly 2
irreducible factors. In general, what if we concentrate on length?

A domain D is atomic if every nonzero nonunit element in D can be
factored into irreducibles (such as OK). Given nonzero nonunit α ∈ D,
the length spectrum L(α) of α is the set of the lengths of all possible
irreducible factorizations of α. We define the elasticity ρ(α) of α by

ρ(α) :=
supL(α)

inf L(α)
.

The elasticity ρ(D) of D is then defined to be the supremum of ρ(α) over
all nonzero nonunits α ∈ D.
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Stretching a domain

Elasticity quantifies the failure of unique factorization in the length aspect
while being blind to the irreducible factors themselves.

An atomic domain D is a half-factorial domain (HFD) if for every nonzero
nonunit α ∈ D, all the factorizations of α share the same length, namely,
the same number of irreducible factors. Such domains are the stiffest,
since they have the smallest elasticity, i.e., 1.

Theorem 2.1 (Carlitz, 1960)

The ring of integers of a number field K is a HFD iff h(K) ∈ {1, 2}.

Since h(Q(
√
−5)) = 2, Z[

√
−5] is a HFD.

On the other hand, Kummer’s example Z[e2πi/23] is not a HFD because
h(Q(e2πi/23)) = 3.
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The Davenport constant

For any finite abelian group G, the Davenport constant D(G) is the smallest
D ∈ N such that any sequence {gi}Di=1 ⊆ G has a nonempty subsequence whose
product equals the identity.

Proposition 2.2

Let G be an abelian group of order n. Then the following holds.

1 D(G) ≤ n with equality precisely when G is cyclic.

2 If G has invariant factor decomposition

G ∼= Z/d1Z× Z/d2Z× · · · × Z/drZ, d1 | d2 | · · · | dr,

then

D(G) ≥ D∗(G) := 1 +
r∑
i=1

(di − 1).

Consequently, D(G) ≥ log 2n
log 2 .
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Elasticity meets Davenport

Theorem 2.3 (Steffan (1986), Valenza (1990), Narkiewicz (1995))

For any number field K, we have

ρ(OK) = max

{
1,

1

2
D(Cl(K))

}
.

For instance, if OK is not a UFD, then

OK is a HFD
Thm 2.3⇐⇒ D(Cl(K)) = 2

Prop 2.2⇐⇒ h(K) = 2.

Theorem 2.3 also shows that OK becomes more and more elastic as the
class group Cl(K) inflates.

Unfortunately, we do not have a general formula for D(G) of an arbitrary
finite abelian group G. Olson (1969) showed that D(G) = D∗(G) if G is
a p-group or G = Z/d1Z× Z/d2Z with d1 | d2.
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A quick proof of ρ(OK) ≤ 1
2D(Cl(K))

Proof of ρ(OK) ≤ 1
2
D(Cl(K)).

Suppose that OK is not a UFD, so that D := D(Cl(K)) ≥ 2. For every
nonzero nonunit α ∈ OK , let ΩK(α) denote the number of prime ideal
factors of αOK . Fix an arbitrary nonzero nonunit α ∈ OK , and suppose
α = π1 · · ·πm = ρ1 · · · ρn are two irreducible factorizations of α, where
m ≥ n. It suffices to prove m/n ≤ D/2 when m > n.

Observation. We may assume, without loss of generality, that none of the
πi is prime. If some πi is prime, then πi is a unit multiple of ρj for some j.
Canceling the factor πi from both factorizations of α yields two irreducible
factorizations of α/πi of lengths m− 1 and n− 1, respectively, with ratio
(m− 1)/(n− 1) > m/n. Repeating this procedure until none of the πi
left is prime, we obtain two irreducible factorizations of some β | α with
length ratio > m/n.
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Proof of ρ(OK) ≤ 1
2
D(Cl(K)).

We claim that ΩK(ρj) ≤ D for every 1 ≤ j ≤ n. To see this, assume to the
contrary that ρjOK = P1 · · ·Ps with s > D. After rearranging the prime ideal
factors, we may assume [P1] · · · [PD] = [OK ], by the definition of D = D(Cl(K)).
Let β ∈ OK be a generator of P1 · · ·PD. Then ρjOK = (βOK)PD+1 · · ·Ps,
which implies β | ρj . But ρj is irreducible. So ρj is a unit multiple of β. Hence,
OK = PD+1 · · ·Ps, which is impossible.

By αOK = ρ1OK · · · ρnOK , we have

ΩK(α) =
n∑
j=1

ΩK(ρj) ≤ Dn.

On the other hand, since none of the πi is prime, we have ΩK(πi) ≥ 2 for each
1 ≤ i ≤ m. Thus ΩK(α) ≥ 2m. Combining this with the upper bound for ΩK(α)
above completes the proof.
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On the other hand, since none of the πi is prime, we have ΩK(πi) ≥ 2 for each
1 ≤ i ≤ m. Thus ΩK(α) ≥ 2m. Combining this with the upper bound for ΩK(α)
above completes the proof.
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

Orders of the day

Let K be a number field. An order in K is a subring of OK containing a
Q-basis for K.

If K is quadratic, then an order in K is simply a subring of OK properly
containing Z. Orders in K are in one-to-one correspondence with N: For
each f ∈ N, there is a unique order Of with index [OK : Of ] = f , i.e.,

Of = Z⊕ fOK = {α ∈ OK : α ≡ a (mod fOK) for some a ∈ Z}.

Conversely, every order O in K is of the form Of for some f ∈ N, with the
maximal order OK = O1. The integer f is called the conductor of Of .

Example 2

Let K = Q(
√

5) with OK = Z[ω], where ω = (
√

5 + 1)/2. Then

O2 = Z⊕ 2OK = Z[
√

5].
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

HFDs among orders

Since non-maximal orders are not integrally closed, they cannot be UFDs. But
they can still be HFDs!

Theorem 3.1 (Coykendall, 2001)

Z[
√
−3] is the only half-factorial non-maximal order in an imaginary quadratic

field.

Conjecture (Coykendall, 2001)

1 There are infinitely many pairs (K, f), where K is a real quadratic field and
f ∈ N, for which Of is a HFD in K.

2 There are infinitely many f ∈ N for which Of is a HFD in Q(
√

2).

Theorem 3.2 (Pollack, 2023&2024)

1 is true, and 2 is true assuming GRH. Moreover, on GRH, every (n+ 1)/2 with
n ∈ N ∪ {∞} occurs as the elasticity of infinitely many orders in Q(

√
2).
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

How elastic?

Given a quadratic number field K with discriminant ∆, what is the typical
size of ρ(Of ) of an order Of in K?

In general, the elasticity of an order may be infinite. A theorem due to
Halter-Koch (1995) asserts that an order O in a number field K has finite
elasticity precisely when every nonzero prime ideal of O lies below a unique
prime ideal of OK . Thus, if K is quadratic, then an order Of in K has
finite elasticity precisely when f is split-free, meaning that f is free of
prime factors that split completely in K.

Moreover, the number of split-free integers in [1, x] is ∼ cx/
√

log x for
some constant c > 0. So, given any quadratic field K, almost all orders in
K have elasticity ∞. This suggests that the proper object of study is not
ρ(Of ) for all conductors f ∈ N, but its restriction to split-free f .
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

Main results

Theorem 3.3 (F. and Pollack, 2024)

If K is a fixed imaginary quadratic field, then for almost all split-free f ,

ρ(Of ) = f/(log f)
1
2
log3 f+

1
2
CK+O((log4 f)

3/ log3 f),

where CK is constant. Here and below, “for almost all split-free f” means
for all but o(x/

√
log x) split-free numbers f ≤ x, as x→∞.

The typical elasticity of a real quadratic order turns out to be quite smaller.

Theorem 3.4 (F. and Pollack, 2024)

If K is a fixed real quadratic field, then conditionally on GRH, for almost
all split-free f ,

ρ(Of ) = (log f)
1
2
+O(1/ log4 f).
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

Class group revisited

For each f ∈ N, let IK(f) denote the group of fractional ideals of K
generated by integral ideals comaximal with fOK , with IK(1) = IK .

Let PK(f) denote the subgroup of IK(f) generated by principal ideals
αOK , where α ≡ a (mod fOK) for some a ∈ Z with gcd(a, f) = 1, with
PK(1) = PK .

The class group Cl(Of ) of the order Of is defined to be the quotient
IK(f)/PK(f), with Cl(O1) = Cl(K).

We have seen that

ρ(OK) = max

{
1,

1

2
D(Cl(K))

}
.

In a similar vein, we relate ρ(Of ) to D(Cl(Of )).
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

The recipe

1 Relate ρ(Of ) to D(Cl(Of )):

1

2
D(Cl(Of )) ≤ ρ(Of ) ≤ max

{
1

2
D(Cl(Of )) +

3

2
Ω(f), 1

}
.

It can be shown that the quantity Ω(f) is typically of a smaller order
than D(Cl(Of )). Hence, ρ(Of ) ≈ 1

2D(Cl(Of )) most of the time.

2 Use the principle subgroup PrinCl(Of ) as a proxy for Cl(Of ):

D(PrinCl(Of )) ≤ D(Cl(Of )) ≤ h(K)D(PrinCl(Of )),

where PrinCl(Of ) is defined as the quotient

(OK/fOK)×/〈images of integers coprime to f, units of OK〉,

which we identify with (IK(f)∩PK)/PK(f) ≤ Cl(Of ) of index h(K).
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

The recipe

3 Pass from PrinCl(Of ) to the pre-class group PreCl(Of ):

PreCl(Of ) := (OK/fOK)×/〈images of integers prime to f〉.

Thus, PrinCl(Of ) = PreCl(Of )/
(
image of O×K

)
. It is not hard to

show that #PreCl(Of ) = ψ(f), where

ψ(f) := f
∏
p|f

(
1− χ(p)

p

)
,

and χ := (∆/·) is the Kronecker symbol. The group PreCl(Of ) is a
close cousin of the more familiar (Z/nZ)× whose order is ϕ(n).
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The recipe

4 If K is imaginary, then

D(PreCl(Of ))

D
(
image of O×K

) ≤ D(PrinCl(Of )) ≤ D(PreCl(Of )),

where D
(
image of O×K

)
≤ #O×K ≤ 6. Hence, D(PrinCl(Of )) is

within a factor of 6 of D(PreCl(Of )).

On the other hand, it is known that for any finite abelian group G,

1 ≤ D(G)

Exp(G)
≤ 1 + log

#G

Exp(G)
,

where Exp(G) is the exponent of G. Applying this to G = PreCl(Of ),
we have

1 ≤
D(PreCl(Of ))

Exp(PreCl(Of ))
≤ 1 + log

ψ(f)

Exp(PreCl(Of ))
.
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

The recipe

5 If K is real, then PrinCl(Of )) ∼= PreCl(Of )/〈image of ε〉, where
ε > 1 is the normalized fundamental unit of OK . Let

`(f) :=
#PreCl(Of )

#PrinCl(Of )
,

which can be described concretely as the least positive integer ` for
which ε` ∈ Of . Clearly, #PrinCl(Of ) = ψ(f)/`(f). We exploit

1 ≤
D(PrinCl(Of ))

Exp(PrinCl(Of ))
≤ 1 + log

#PrinCl(Of )

Exp(PrinCl(Of ))
.

Hence, we have reduced the proof of our theorems to the estimation of

Exp(PreCl(Of )) when K is imaginary;

Exp(PrinCl(Of )) and `(f) when K is real.
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

The exponent of PreCl(Of)
Chinese Remainder Theorem ⇒ PreCl(Of ) ∼=

∏
pk‖f PreCl(Opk), whence

Exp(PreCl(Of )) = lcm
{

Exp(PreCl(Opk)) : pk ‖ f
}
,

which is an analogue to the familiar definition of the Carmichael function

λ(n) := Exp
(
(Z/nZ)×

)
= lcm

{
Exp
(
(Z/pkZ)×

)
: pk ‖ n

}
.

The lemma below, due essentially to Halter-Koch, determines almost all of
the exponents PreCl(Opk).

Lemma 3.5

If p > 3 is inert or ramified in K, then PreCl(Opk) is cyclic.

An immediate corollary of Lemma 3.5 is that for all split-free f ∈ N,

L′(f) | Exp(PreCl(Of )) | L(f).
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

The exponent of PreCl(Of)
Recall that Exp(PreCl(Of )) is sandwiched by L(f) and L′(f), where

L(f) := lcm{ψ(pk) : pk ‖ f},
L′(f) := lcm{ψ(pk) : pk ‖ f, p > 3}.

In particular, L(f) may be viewed as an analogue to λ(n).

Proposition 3.6 (F. and Pollack, 2024)

For almost all split-free f ,

L(f) = f/(log f)
1
2
log3 f+

1
2
CK+O((log4 f)

3/ log3 f).

The same estimate holds with L′(f) replacing L(f).

Our proof adapts the argument of Erdős, Pomerance, and Schmutz (1991)
on the typical size of λ(n).
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Arithmetic of Z Unique factorization Elasticity of a quadratic order

Back to the real world

Let K be real quadratic. We still need to estimate Exp(PrinCl(Of )) and `(f).

Proposition 3.7 (F. and Pollack, 2024)

Let K be a real quadratic field. Under GRH, we have, for almost all split-free f ,

i Rad (Exp(PrinCl(Of ))) = (log f)
1
2+O(1/ log4 f),

ii Exp(PrinCl(Of )) = Rad (Exp(PrinCl(Of ))) (log f)O(1/ log4 f),

iii L(f)/`(f) = (log f)O(1/ log4 f).

The treatment of `(f) requires a GRH-conditional version of the Chebotarev
density theorem due to Serre (1981).

The proof Proposition 3.7 borrows ideas from Pollack (2021) on the normal order
of ω(ϕ(n)/λ(n)), and from the proof of a result on the largest prime factor of
λ(n)/`a(n) due to Li and Pomerance (2003), from which a GRH-conditional
central limit theorem for ω(`a(n)), first established by Murty and Saidak (2001),
can be recovered, where `a(n) denotes the order of a (mod n).
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One more thing:

the normal order of an additive function

An important tool for studying the normal order of an additive function is the
Turán–Kubilius inequality. Let f : N→ C be an additive function. Define

Af (x) :=
∑
pk≤x

f(pk)

pk

(
1− 1

p

)
,

which we may think of as an approximation to the mean value of f over [1, x].
The Turán–Kubilius inequality asserts that

1

x

∑
n≤x

|f(n)−Af (x)|2 � Bf (x),

where

Bf (x) :=
∑
pk≤x

|f(pk)|2

pk
.

Thus, if Bf (x) = o(|Af (x)|2), then f(n) ≈ Af (x) for almost all n ∈ N ∩ [1, x].

Steve Fan (MPIM Bonn) Number Theory Lunch Seminar October 22, 2024 28 / 32



Arithmetic of Z Unique factorization Elasticity of a quadratic order

One more thing: the normal order of an additive function

An important tool for studying the normal order of an additive function is the
Turán–Kubilius inequality. Let f : N→ C be an additive function. Define

Af (x) :=
∑
pk≤x

f(pk)

pk

(
1− 1

p

)
,

which we may think of as an approximation to the mean value of f over [1, x].
The Turán–Kubilius inequality asserts that

1

x

∑
n≤x

|f(n)−Af (x)|2 � Bf (x),

where

Bf (x) :=
∑
pk≤x

|f(pk)|2

pk
.

Thus, if Bf (x) = o(|Af (x)|2), then f(n) ≈ Af (x) for almost all n ∈ N ∩ [1, x].

Steve Fan (MPIM Bonn) Number Theory Lunch Seminar October 22, 2024 28 / 32



Arithmetic of Z Unique factorization Elasticity of a quadratic order

Attaching weight

Let α : N→ R≥0 be a multiplicative function with Sα(x) :=
∑

n≤x α(n).
Suppose that there exist cα, δ > 0, σ ≥ 0 and κ ∈ R, such that

1 uniformly for all x ≥ 1 and all squarefree a ∈ N ∩ [1, xδ] with at most
two prime factors,∑

n≤x
(n,a)=1

α(n) = cαx
σ(log 3x)κ−1

(
Fα(a)−1 +O

(
1

log log 3x

))
, (1)

where

Fα(a) :=
∏
p|a

∑
k≥0

α(pk)

pkσ
<∞;

2 for all x ≥ 2, ∑
pk≤x

α(pk)

pkσ
log pk � log x. (2)

Steve Fan (MPIM Bonn) Number Theory Lunch Seminar October 22, 2024 29 / 32



Arithmetic of Z Unique factorization Elasticity of a quadratic order

A heavy gem: weighted Turán–Kubilius

Theorem 3.8 (F. and Pollack, 2024)

Let α : N→ R≥0 be a multiplicative function satisfying the conditions 1 and 2

on the previous slide. Then for any additive function f : N→ C, we have

Sα(x)−1
∑
n≤x

α(n) |f(n)−Aα,f (x)|2 � Bα,f (x) (3)

for all x ≥ 1, where

Aα,f (x) :=
∑
pk≤x

α(pk)Fα(p)−1
f(pk)

pkσ
,

Bα,f (x) :=
∑
pk≤x

α(pk)
|f(pk)|2

pkσ

(
1− log pk

log 3x

)min(κ−1,0)

.

The implied constant in (3) depends at most on δ, κ and the implied constants in
(1) and (2).
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Weighted Turán–Kubilius in action

Fixing a quadratic field K with discriminant ∆, we take α = 1split-free, with partial
sums Sα(x) = cαx(log 3x)−1/2(1 +O(1/ log 3x)), where

cα =

√
1

πL(1, χ)
· |∆|
ϕ(|∆|)

∏
p inert

(
1− 1

p2

)−1/2
, with χ := (∆/·).

A crucial step in determining the typical size of L(f) is to estimate the following
cutoff of logψ(f):

h(f) :=
∑

p≤y log y
pk‖ψ(f)

log pk, where y = log log x.

An application of our weighted Turán–Kubilius inequality to h(f) yields∣∣∣∣h(f)− 1

2
y log y − 1

2
y log2 y −

c′

2
y

∣∣∣∣ < y

log y

for all but o(x/
√

log x) split-free f ≤ x, where c′ is a constant depending on ∆.
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“A peculiar beauty reigns in the
realm of mathematics, a beauty

which resembles not so much
the beauty of art as the beauty
of nature and which affects the

reflective mind, which has
acquired an appreciation of it,

very much like the latter.”

— Ernst Eduard Kummer
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