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Arithmetic of Z
®00

Elements: the dawn of arithmetic

Let N={1,2,3,...} be the set of positive integers. There are two basic
binary operations on N: addition “+" and multiplication “Xx", the latter of
which leads naturally to the notions of divisibility and factorization.

Let P C N be the subset consisting of all n > 1 for which there are no
positive integers a,b > 1 such that n = ab. The elements of P are called
primes or irreducibles. |t was known to Euclid that every n > 1 can be
written as a product of finitely many primes.
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Elements: the dawn of arithmetic

Let N={1,2,3,...} be the set of positive integers. There are two basic
binary operations on N: addition “+" and multiplication “Xx", the latter of
which leads naturally to the notions of divisibility and factorization.

Let P C N be the subset consisting of all n > 1 for which there are no
positive integers a,b > 1 such that n = ab. The elements of P are called
primes or irreducibles. |t was known to Euclid that every n > 1 can be
written as a product of finitely many primes.

In his treatise Elements, Euclid demonstrated two important properties of
primes:

Q #P = .
@ Ifa,b €N and p € P are such that p | ab, then p | a or p | b.

Property @ is commonly used as the definition of prime elements of a

commutative ring, while the one given above often serves as the definition
of irreducible elements.
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The missing element

Euclid proved the existence of prime factorization. Although he was
probably aware that the prime factorization of a positive integer > 1 is
unique apart from rearrangement of its prime factors, he did not try to
state it explicitly, let alone write down a proof of it. Nor did many
mathematicians that came after him, who confidently took the idea of
unique factorization for granted. Gauss seems to be the first to provide a
precise statement of unique factorization of N as well as a rigorous proof.

Theorem 1.1 (The fundamental theorem of arithmetic)

Every positive integer n > 1 admits a prime factorization which is unique
up to the order of its prime factors.

Gauss' proof of the fundamental theorem given in his book “Disquisitiones
Arithmeticae” is based on Property @ discovered by Euclid. Arguably,
Euclid could have proved this theorem if he had tried.
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Unique factorization in Z

The fundamental theorem can be reformulated as the following for the ring
of rational integers Z := £N U {0}.

Theorem 1.2 (Unique prime factorization in Z)

Everyn € 7\ {0,£1} admits a prime factorization n = py - - - py with
D1, .-, P € £IP for some k € N, and this factorization is unique up to the
order of the prime factors p1, ..., pr and up to unit factors +1.

The uniqueness part says that if n =p;---pr = g1 - - - q¢ are two prime
factorizations of n, then we must have (1) & = £ and (2) there exists a
rearrangement g;,, ..., ¢j, of qi, ..., qx such that g;;, = £p; forall 1 <1 < k.

The notion of prime factorization extends naturally to that of factorization
into irreducible elements in a general integral domain.
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Irreducible factorization in a domain

Let D be a domain. A nonzero nonunit element of D is irreducible if it
cannot be written as a product of two nonunit elements.
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Irreducible factorization in a domain

Let D be a domain. A nonzero nonunit element of D is irreducible if it
cannot be written as a product of two nonunit elements.

A domain D is a unique factorization domain (UFD) if every nonzero
nonunit element of D can be written as a product of finitely many
irreducibles uniquely up to the order of the factors and up to units.

Example 1 (Examples of UFD)

@ Principle ideal domains (PIDs): Z, Z[i], Z[e*™"/3], Z,,, K|[z] and
K|[[z]] with K a field, etc.

@ The polynomial ring D[z1, ..., x|, where D is a UFD.

In a UFD, an element is prime iff it is irreducible. So any factorization into
irreducibles in a UFD is a genuine prime factorization.
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Lamé’'s dream

In 1847, Lamé, who had solved Fermat's equation 7 + 47 = 27, presented
to the Paris Academy an outline of what he believed was a complete proof
of Fermat's Last Theorem. His proof rests on the assumption that the ring
of integers Z[e2™/P] of any cyclotomic field Q(e*™/P) is a UFD.
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Lamé’'s dream

In 1847, Lamé, who had solved Fermat's equation 7 + 47 = 27, presented
to the Paris Academy an outline of what he believed was a complete proof
of Fermat's Last Theorem. His proof rests on the assumption that the ring
of integers Z[e2™/P] of any cyclotomic field Q(e*™/P) is a UFD.

Liouville: “I'm skeptical. The UFD assumption is unjustified.”
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Lamé’'s dream

In 1847, Lamé, who had solved Fermat's equation 7 + 47 = 27, presented
to the Paris Academy an outline of what he believed was a complete proof
of Fermat's Last Theorem. His proof rests on the assumption that the ring
of integers Z[e2™/P] of any cyclotomic field Q(e*™/P) is a UFD.

Liouville: “I'm skeptical. The UFD assumption is unjustified.”

Cauchy: “Looks promising. I'm also very close to having a solution based
on a similar idea.”
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Lamé’'s dream

In 1847, Lamé, who had solved Fermat's equation 7 + 47 = 27, presented
to the Paris Academy an outline of what he believed was a complete proof
of Fermat's Last Theorem. His proof rests on the assumption that the ring
of integers Z[e2™/P] of any cyclotomic field Q(e*™/P) is a UFD.

Liouville: “I'm skeptical. The UFD assumption is unjustified.”

Cauchy: “Looks promising. I'm also very close to having a solution based
on a similar idea.”

Wantzel: “l have a proof that Z[e%i/p] is a UFD. You see, though | only
considered p = 2,3, the proof generalizes easily.”
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Lamé’'s dream

In 1847, Lamé, who had solved Fermat's equation 7 + 47 = 27, presented
to the Paris Academy an outline of what he believed was a complete proof
of Fermat's Last Theorem. His proof rests on the assumption that the ring
of integers Z[e2™/P] of any cyclotomic field Q(e*™/P) is a UFD.

Liouville: “I'm skeptical. The UFD assumption is unjustified.”

Cauchy: “Looks promising. I'm also very close to having a solution based
on a similar idea.”

Wantzel: “l have a proof that Z[e%i/p] is a UFD. You see, though | only
considered p = 2,3, the proof generalizes easily.”

Cauchy: “Hold on, your argument doesn't work when p > 5."
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Lamé’'s dream

In 1847, Lamé, who had solved Fermat's equation 7 + 47 = 27, presented
to the Paris Academy an outline of what he believed was a complete proof
of Fermat's Last Theorem. His proof rests on the assumption that the ring
of integers Z[e2™/P] of any cyclotomic field Q(e*™/P) is a UFD.

Liouville: “I'm skeptical. The UFD assumption is unjustified.”

Cauchy: “Looks promising. I'm also very close to having a solution based
on a similar idea.”

Wantzel: “l have a proof that Z[e%i/p] is a UFD. You see, though | only
considered p = 2,3, the proof generalizes easily.”

Cauchy: “Hold on, your argument doesn't work when p > 5."
Liouville: "Okay guys. | just read an article written by Mr. Kummer which

confirmed the failure of unique factorization in Z[e2™%/23]."
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Dedekind'’s ideal theory

We now know that Z[e?>™"/P] is a UFD iff p < 23, thanks to Montgomery (1971)

and Uchida (1971). A simpler example of a non-UFD is Z[/—5], the ring of
integers of Q(v/—5). In this domain, we have

6=2x3=(1++v-5)(1-v-5),
where 2,3,1++/—5, and 1 — +/—5 are all irreducible but not prime!
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Dedekind'’s ideal theory

We now know that Z[e?>™"/P] is a UFD iff p < 23, thanks to Montgomery (1971)
and Uchida (1971). A simpler example of a non-UFD is Z[/—5], the ring of
integers of Q(+/—5). In this domain, we have

6=2x3=(1++v-5)(1-v-5),
where 2,3,1++/—5, and 1 — +/—5 are all irreducible but not prime!

Nonetheless, Dedekind showed that the nonzero proper ideals of a number ring do
possess unique factorizations into prime ideals.

More precisely, every nonzero proper ideal I of the ring of integers
Ok :={a € K: f(a) =0 for some monic f € Z[z]}

of a number field K admits a factorization I = P; - -- Py unique up to the order
of the prime ideal factors Py, ..., P, C Ok.

For instance, we have in Z[/—5] that
(6) = (2,1+v=5)" (3,14 V=5) (3,1 — V=5) .
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Measuring unique factorization: class group

For a number field K, let Ix be the collection of nonzero fractional ideals
of Ok and Pk the collection of nonzero principal fractional ideals of O-.
They become abelian groups under multiplication.

The ideal class group CI(K) of K is defined by CI(K) := Ix/Pk.
We define the class number h(K) of K by h(K) := #CI(K).
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Measuring unique factorization: class group

For a number field K, let Ix be the collection of nonzero fractional ideals
of Ok and Pk the collection of nonzero principal fractional ideals of O-.
They become abelian groups under multiplication.

The ideal class group CI(K) of K is defined by CI(K) := Ix/Pk.
We define the class number h(K) of K by h(K) := #CI(K).

It can be shown that A(K) < co and that
hK)=1<«= Ok is a PID <= Ok is a UFD.

So CI(K') measures how far Ok is from being a UFD.

Since h(Q(v/—=5)) = 2 and h(Q(e2™/?3)) = 3, Z[e*™/?3] is further from
being a UFD than Z[v/-5].
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Searching for UFOs

Let K4y = Q(V/d) be a quadratic number field, where d € Z is square-free.

For imaginary quadratic fields (d < 0), it was conjectured by Gauss (1801)
and proved by Heegner (1952), Baker (1966), Stark (1967), et al., that

WKy =1<=de{-1,-2,-3,—7,—11, 19, —43, —67, —163}.

Little is known about real quadratic fields (d > 0). It is an open conjecture
that h(Ky) = 1 for infinitely many d > 0. In fact, it is not even known if
there are infinitely many number fields with class number 1.

In general, pinpointing UFDs is hard!
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Introducing elasticity

We have seen that Z[\/—5] is not a UFD. For the factorization
6=2x3=(1+v=5)(1—v=5),

uniqueness fails only halfway, since both factorizations contain exactly 2
irreducible factors. In general, what if we concentrate on length?
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Introducing elasticity

We have seen that Z[\/—5] is not a UFD. For the factorization
6=2x3=(1+v=5)(1—v=5),

uniqueness fails only halfway, since both factorizations contain exactly 2
irreducible factors. In general, what if we concentrate on length?

A domain D is atomic if every nonzero nonunit element in D can be
factored into irreducibles (such as Ok). Given nonzero nonunit o € D,
the length spectrum L(«) of « is the set of the lengths of all possible
irreducible factorizations of a. We define the elasticity p(«) of « by

_ supL(a)
pla) = L)

The elasticity p(D) of D is then defined to be the supremum of p(«) over
all nonzero nonunits a € D.
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Stretching a domain

Elasticity quantifies the failure of unique factorization in the length aspect
while being blind to the irreducible factors themselves.

An atomic domain D is a half-factorial domain (HFD) if for every nonzero
nonunit o € D, all the factorizations of « share the same length, namely,
the same number of irreducible factors. Such domains are the stiffest,
since they have the smallest elasticity, i.e., 1.
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Stretching a domain

Elasticity quantifies the failure of unique factorization in the length aspect
while being blind to the irreducible factors themselves.

An atomic domain D is a half-factorial domain (HFD) if for every nonzero
nonunit o € D, all the factorizations of « share the same length, namely,
the same number of irreducible factors. Such domains are the stiffest,
since they have the smallest elasticity, i.e., 1.

Theorem 2.1 (Carlitz, 1960)

The ring of integers of a number field K is a HFD iff h(K) € {1,2}.

Since h(Q(v/=5)) = 2, Z[/—5] is a HFD.

On the other hand, Kummer's example Z[e?>™/?3] is not a HFD because
h(@(e2wi/23)) = 3.
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The Davenport constant

For any finite abelian group G, the Davenport constant D(G) is the smallest
D € N such that any sequence {g;}2, C G has a nonempty subsequence whose
product equals the identity.
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The Davenport constant

For any finite abelian group G, the Davenport constant D(G) is the smallest
D € N such that any sequence {g;}2, C G has a nonempty subsequence whose
product equals the identity.

Proposition 2.2

Let G be an abelian group of order n. Then the following holds.

Q@ D(G) < n with equality precisely when G is cyclic.

@ If G has invariant factor decomposition
G=Z/dZ X Z)dZ X --- X L]d,Z, di|do |- |dy,

then .
D(G) > D*(G) =1+ (d; — 1).
=1

Consequently, D(G) > l?ngS'
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Elasticity meets Davenport

Theorem 2.3 (Steffan (1986), Valenza (1990), Narkiewicz (1995))

For any number field K, we have

A(O) = e {1, %D(CI(K))} .

For instance, if Ok is not a UFD, then

Thm 2.3

O is a HFD "™22% D(CI(K)) = 2 "3?

h(K) = 2.

Theorem 2.3 also shows that O becomes more and more elastic as the
class group CI(K) inflates.
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Elasticity meets Davenport

Theorem 2.3 (Steffan (1986), Valenza (1990), Narkiewicz (1995))

For any number field K, we have

A(O) = e {1, %D(CI(K))} .

For instance, if Ok is not a UFD, then
Ok is a HFD "223 D(CI(K)) = 2 T"23° j(K) = 2.
Theorem 2.3 also shows that O becomes more and more elastic as the

class group CI(K) inflates.

Unfortunately, we do not have a general formula for D(G) of an arbitrary
finite abelian group G. Olson (1969) showed that D(G) = D*(G) if G is
a p-group or G = Z/d1Z x Z/doZ with d; | da.
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4-slide proof of Theorem 2.3

Proof of p(Of) < :D(CI(K))

— 2
Suppose that O is not a UFD, so that D := D(CI(K)) > 2. For every nonzero
nonunit @ € Ok, let Q () denote the number of prime ideal factors of aOk.
Fix an arbitrary nonzero nonunit o € O, and let

a:ﬂ'lﬂ-m:plpn

be two irreducible factorizations of «, where m > n. Suffice to show m/n < D/2
when m > n.

v
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4-slide proof of Theorem 2.3

Proof of p(Of) < :D(CI(K))

—

Suppose that O is not a UFD, so that D := D(CI(K)) > 2. For every nonzero
nonunit @ € Ok, let Q () denote the number of prime ideal factors of aOk.
Fix an arbitrary nonzero nonunit o € O, and let

a:'n'lﬂ'm:plpn

be two irreducible factorizations of «, where m > n. Suffice to show m/n < D/2
when m > n.

Observation. We may assume, without loss of generality, that none of the 7; is
prime: If some 7; is prime, then m; is a unit multiple of p; for some j. Canceling
the factor 7; from both factorizations of « yields two irreducible factorizations of
a/7; of lengths m — 1 and n — 1, respectively, with ratio (m —1)/(n—1) > m/n.
Repeating this procedure until none of the ; left is prime, we obtain two
irreducible factorizations of some 3 | a with length ratio > m/n.

v
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4-slide proof of Theorem 2.3

Proof of p(Ok) < $D(CI(K)).
Claim. Qg (p;) < D for every 1 < j <n.

Assume to the contrary that p;Ox = P --- Ps with s > D. Upon rearranging
the prime ideal factors, we may assume [P;]- - [Pp] = [Ok], by the definition of
D = D(CI(K)). Let 8 € Ok be a generator of Py --- Pp. Then

piOk = (BOk) Ppy1--- Ps.

But p; irreducible = Og = Ppy1 -+ Ps, impossible.

v
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4-slide proof of Theorem 2.3

Proof of p(Ok) < $D(CI(K)).
Claim. Qg (p;) < D for every 1 < j <n.

Assume to the contrary that p;Ox = P --- Ps with s > D. Upon rearranging
the prime ideal factors, we may assume [P;]- - [Pp] = [Ok], by the definition of
D = D(CI(K)). Let 8 € Ok be a generator of Py --- Pp. Then

piOk = (BOk) Ppy1--- Ps.
But p; irreducible = Og = Ppy1 -+ Ps, impossible.
By aOx = p10k - - pn Ok,
Q) =Y Qk(p;) < Dn.
p

Since none of the m; is prime, Qg (m;) > 2 for 1 < i < m, whence Qx(a) > 2m.
Som/n < D/2. O]

v
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4-slide proof of Theorem 2.3

Proof of p(O) > 1 D(CI(K))

Suppose again that O is not a UFD, with D := D(CI(K)) > 2.
Fact. Every ideal class contains a prime ideal.

So we can find ideal classes [P], ..., [Pp—1] of which no nonempty subsequence
has trivial product. Adding

[Pp] := ([P] - [Pp—1]) ™"

to this collection, we find that [P;], ..., [Pp] has trivial product but no nonempty
proper subsequence does.

v
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4-slide proof of Theorem 2.3

Proof of p(Of) > £ D(CI(K))

— 2

Suppose again that O is not a UFD, with D := D(CI(K)) > 2.
Fact. Every ideal class contains a prime ideal.

So we can find ideal classes [P], ..., [Pp—1] of which no nonempty subsequence
has trivial product. Adding

[Pp] := ([P] - [Pp—1]) ™"

to this collection, we find that [P;], ..., [Pp] has trivial product but no nonempty
proper subsequence does.

For 1 <i < D, let [Q;] := [P;]~! and let P,Q; = ;O for some «a; € Ok.
Let P, --- Pp = Ok for some 5 € O. By

(PiQ1) -+ (PpQp) = (P1--- Pp)(Q1--Qp),

v
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4-slide proof of Theorem 2.3

Proof of p(Ok) > 1 D(CI(K)).
there exists 7 € Ok such that Q1 ---Qp = YOk and

D
Hai = B.
i=1

Thus, the inequality p(Ok) > D/2 will follow if we can show «y, ..., ap, 58,7 are
all irreducible.

v
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4-slide proof of Theorem 2.3

Proof of p(Ok) > 1 D(CI(K)).

there exists v € Ok such that Q1 ---Qp = YOk and

D
Hai = B.
i=1

Thus, the inequality p(Ok) > D/2 will follow if we can show «y, ..., ap, 58,7 are
all irreducible. Recall

P;Q; = 0,0k,

Py---Pp = B0k,

Q1---Qp =0k.
Any of ay,...,ap, B, being reducible would contradict the fact that Py, ..., Pp
has no nonempty proper subsequence with trivial product. ]

v
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Orders of the day

Let K be a number field. An order in K is a subring of Ok containing a
Q-basis for K.

If K is quadratic, then an order in K is simply a subring of O properly
containing Z. Orders in K are in one-to-one correspondence with N: For
each f € N, there is a unique order Oy with index [Ok : O] = f, i.e,,

O =7Z® fOx ={a € Og : a =a (mod fOf) for some a € Z}.

Conversely, every order O in K is of the form O for some f € N, with the
maximal order O1 = Ok . The integer f is called the conductor of Oy.

Let K = Q(v/5) with O = Z[w], where w = (v/5 + 1)/2. Then

Oy =78 20K = Z[V5].
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HFDs among orders

Since non-maximal orders are not integrally closed, they cannot be UFDs. But
they can still be HFDs!

Theorem 3.1 (Coykendall, 2001)

Z[/—3] is the only half-factorial non-maximal order in an imaginary quadratic
field.

Conjecture (Coykendall, 2001)

@ There are infinitely many pairs (K, f), where K is a real quadratic field and
f €N, for which Oy is a HFD in K.

@ There are infinitely many f € N for which Oy is a HFD in Q(v/2).
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HFDs among orders

Since non-maximal orders are not integrally closed, they cannot be UFDs. But
they can still be HFDs!

Theorem 3.1 (Coykendall, 2001)

Z[/—3] is the only half-factorial non-maximal order in an imaginary quadratic
field.

V.

Conjecture (Coykendall, 2001)

@ There are infinitely many pairs (K, f), where K is a real quadratic field and
f €N, for which Oy is a HFD in K.

@ There are infinitely many f € N for which Oy is a HFD in Q(v/2).

v

Theorem 3.2 (Pollack, 2023&2024)

O is true, and @ is true assuming GRH. Moreover, on GRH, every (n+1)/2 with
n € NU {co} occurs as the elasticity of infinitely many orders in Q(\/2).
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How elastic?

Given a quadratic number field K with discriminant A, what is the typical
size of p(Oy) of an order O¢ in K7

In general, the elasticity of an order may be infinite. A theorem due to
Halter-Koch (1995) asserts that an order O in a number field K has finite
elasticity precisely when every nonzero prime ideal of O lies below a unique
prime ideal of Of. Thus, if K is quadratic, then an order O in K has
finite elasticity precisely when f is split-free, meaning that f is free of
prime factors that split completely in K.
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How elastic?

Given a quadratic number field K with discriminant A, what is the typical
size of p(Oy) of an order O¢ in K7

In general, the elasticity of an order may be infinite. A theorem due to
Halter-Koch (1995) asserts that an order O in a number field K has finite
elasticity precisely when every nonzero prime ideal of O lies below a unique
prime ideal of Of. Thus, if K is quadratic, then an order O in K has
finite elasticity precisely when f is split-free, meaning that f is free of
prime factors that split completely in K.

Moreover, the number of split-free integers in [1, z] is ~ cx/+/log x for
some constant ¢ > 0. So, given any quadratic field K, almost all orders in
K have elasticity oco. This suggests that the proper object of study is not
p(Oy) for all conductors f € N, but its restriction to split-free f.
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Main results

Theorem 3.3 (F. and Pollack, 2024)
If K is a fixed imaginary quadratic field, then for almost all split-free f,

p(O;) = f/(log f)%logs f+3Cr+0((logy f)?/ logs h,

where C'ic is constant. Here and below, “for almost all split-free f” means
for all but o(x/+/log x) split-free numbers f < x, as © — 0.

v

The typical elasticity of a real quadratic order turns out to be quite smaller.

Theorem 3.4 (F. and Pollack, 2024)

If K is a fixed real quadratic field, then conditionally on GRH, for almost
all split-free f,

p(Oy) = (log f)2 700/ 108 ),
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Class group revisited

For each f € N, let Ix(f) denote the group of fractional ideals of K
generated by integral ideals comaximal with fOg, with Ik (1) = Ik.

Let Pk (f) denote the subgroup of I (f) generated by principal ideals
aOg, where « = a (mod fOg) for some a € Z with ged(a, f) = 1, with
Pk (1) = Pg.

The class group CI(Oy) of the order Oy is defined to be the quotient
I (f)/Pr(f), with CI(O1) = CI(K).

Steve Fan (UGA) UGA NT/AG Seminar March 17, 2025
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Class group revisited

For each f € N, let Ix(f) denote the group of fractional ideals of K
generated by integral ideals comaximal with fOg, with Ik (1) = Ik.

Let Pk (f) denote the subgroup of I (f) generated by principal ideals
aOg, where « = a (mod fOg) for some a € Z with ged(a, f) = 1, with
Pk (1) = Pg.

The class group CI(Oy) of the order Oy is defined to be the quotient
I (f)/Pr(f), with CI(O1) = CI(K).

We have seen that
p(Ox) = max {1, %D(CI(K))} .

In a similar vein, we relate p(Oy) to D(CI(Oy)).
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The recipe

@ Relate p(Oy) to D(CI(Oy)):

S D(CIO)) < p(Oy) < max

N |

D(CI(Oy)) + gQ(f),l}.

It can be shown that the quantity Q(f) is typically of a smaller order
than D(CI(Oy)). Hence, p(Oy) =~ £D(CI(Oy)) most of the time.
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The recipe

@ Relate p(Oy) to D(CI(Oy)):
%D(CI((’)]«)) < p(0y) < max{2D(C|(0f)) + gﬂ(f), 1} .

It can be shown that the quantity Q(f) is typically of a smaller order
than D(CI(Oy)). Hence, p(Oy) =~ £D(CI(Oy)) most of the time.

@ Use the principle subgroup PrinCI(Oy) as a proxy for Cl(Oy):
D(PrinCl(Oy)) < D(CI(Oy)) < h(K)D(PrinCl(Oy)),
where PrinCl(Oy) is defined as the quotient
(Ok/fOK)*/(images of integers coprime to f, units of Ok),

which we identify with (I (f) N Pk )/ Pk (f) < Cl(Oy) of index h(K).
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The recipe

@ Pass from PrinCl(O¢) to the pre-class group PreCl(Oy):
PreCl(Oy) := (Or/fOk )™ /(images of integers prime to f).

Thus, PrinCI(Oy) = PreCl(Oy)/ (image of O}). It is not hard to
show that #PreCl(Oy) = ¥ (f), where

_ _x(p)
W(f) = fg (1 M ) |

and x := (A/-) is the Kronecker symbol. The group PreCl(Oy) is a
close cousin of the more familiar (Z/nZ)* whose order is
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The recipe

@ If K is imaginary, then

D(PreCl(Oy))
D (image of O})

< D(PrinCI(Oy)) < D(PreCl(Oy)),

where D (image of OF) < #0;: < 6. Hence, D(PrinCI(Oy)) is
within a factor of 6 of D(PreCl(Oy)).

On the other hand, it is known that for any finite abelian group G,
D(G) #G
<1+1
SEBeG) ~ | Ee@)

where Exp(G) is the exponent of G. Applying this to G = PreCl(Oy),
we have

D(PreCl(Oy))
1< Exp(PreCl(Oy))

U(f)
PreCl(Oy))"

<1+log Expl
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The recipe

@ If K is real, then PrinCI(Oy)) = PreCl(Oy)/(image of €), where
e > 1 is the normalized fundamental unit of Ok. Let

_ #PreCl(Oy)
Uf) = #PTCI(Of)’

which can be described concretely as the least positive integer ¢ for
which £ € Oy. Clearly, #PrinCI(Of) = (f)/¢(f). We exploit

D(PrinCI(O;)) #PrinCI(O;)
LS EptPrinci(0)) = 718 Exp(PrinCI(0;))
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The recipe

@ If K is real, then PrinCI(Oy)) = PreCl(Oy)/(image of €), where
e > 1 is the normalized fundamental unit of Ok. Let

_ #PreCl(Oy)
Uf) = #PTCI(Of)’

which can be described concretely as the least positive integer ¢ for
which £ € Oy. Clearly, #PrinCI(Of) = (f)/¢(f). We exploit

D(PrinCI(O;)) #PrinCI(O;)
LS EptPrinci(0)) = 718 Exp(PrinCI(0;))

Hence, we have reduced the proof of our theorems to the estimation of
o Exp(PreCl(Oy)) when K is imaginary;
o Exp(PrinCI(Oy)) and £(f) when K is real.
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The exponent of PreCl(Oy)
Chinese Remainder Theorem = PreCl(Oy) = [] x| s PreCl(O,x), whence

Exp(PreCl(O})) = lem {Exp(PreCI( D)ot | f}
which is an analogue to the familiar definition of the Carmichael function
A(n) := Exp ((Z/nZ)*) = lem {Exp((Z/ka)x) | n} .

The lemma below, due essentially to Halter-Koch, determines almost all of
the exponents PreCl(O, ).

If p > 3 is inert or ramified in K, then PreCl(O,) is cyclic.

Steve Fan (UGA) UGA NT/AG Seminar March 17, 2025 27



Elasticity of a quadratic order
000000000e000000000

The exponent of PreCl(Oy)
Chinese Remainder Theorem = PreCl(Oy) = [] x| s PreCl(O,x), whence

Exp(PreCl(O})) = lem {Exp(PreCI( D)ot | f}
which is an analogue to the familiar definition of the Carmichael function
A(n) := Exp ((Z/nZ)*) = lem {Exp((Z/ka)x) | n} .

The lemma below, due essentially to Halter-Koch, determines almost all of
the exponents PreCl(O, ).

If p > 3 is inert or ramified in K, then PreCl(O,) is cyclic.

An immediate corollary of Lemma 3.5 is that for all split-free f € N,
L'(f) | Exp(PreCl(Oy)) | L(f).
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The exponent of PreCl(Oy)
Recall that Exp(PreCl(Oy)) is sandwiched by L(f) and L'(f), where

L(f) = lem{y(p") : p* || f1,
L'(f) = lem{v (") : " || £, p > 3}.

In particular, L(f) may be viewed as an analogue to A(n).
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The exponent of PreCl(Oy)
Recall that Exp(PreCl(Oy)) is sandwiched by L(f) and L'(f), where

L(f) = lem{y(p") : p* || f1,
L'(f) = lem{v (") : " || £, p > 3}.

In particular, L(f) may be viewed as an analogue to A(n).

Proposition 3.6 (F. and Pollack, 2024)

For almost all split-free f,

L(f) = f/(log f)? 1083 F+5Cx+O0((logs /)*/ logs /),

The same estimate holds with L'(f) replacing L(f).

Our proof adapts the argument of Erd8s, Pomerance, and Schmutz (1991)
on the typical size of A\(n).
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Back to the real world

Let K be real quadratic. We still need to estimate Exp(PrinCl(Oy)) and £(f).
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Back to the real world

Let K be real quadratic. We still need to estimate Exp(PrinCl(Oy)) and £(f).

Proposition 3.7 (F. and Pollack, 2024)

r

Let K be a real quadratic field. Under GRH, we have, for almost all split-free f,
@ Rad (Exp(PrinCl(Oy))) = (log f)2 3+0(1/logy f)

@ Exp(PrinCI(Oy)) = Rad (Exp(PrinCI(Oy))) (log f)O(1/ 18 £),

Q@ L(f)/U(f) = (log f) O/ 108 ).

The treatment of £(f) requires a GRH-conditional version of the Chebotarev
density theorem due to Serre (1981).

The proof Proposition 3.7 borrows ideas from Pollack (2021) on the normal order
of w(p(n)/A(n)), and from the proof of a result on the largest prime factor of
A(n)/€q(n) due to Li and Pomerance (2003), from which a GRH-conditional
central limit theorem for w(¢,(n)), first established by Murty and Saidak (2001),
can be recovered, where ¢,(n) denotes the order of a (mod n).
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One more thing:
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One more thing: the normal order of an additive function

Let f: N — C be an additive function. Define
PAralCh
pk<x p

which we may think of as an approximation to the mean value of f on [1,z]. The
Turdn—Kubilius inequality asserts that

—Zlf (z)]? < By (),

n<x

where

Thus, if By(z) = o(|As(z)|?), then f(n) ~ As(z) for almost all n € NN [1,z].
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Attaching weight

Let a: N — R be a multiplicative function with S, (x) := )"

Suppose that there exist ¢, > 0, 0 > 0 and k € R, such that

@ uniformly for all z > 1 and all squarefree a € NN [1,2°] with at most
two prime factors,

S a(n) = cas®(log3z)"! <Fa(a)_1+0(;)>, (1)

log log 3z

n<a a(n).

n<x
(n,a)=1

where

alpk
Fy(a) == HZ ]Efa) < o0;

pla k>0

Q for all x > 2, .
Z %logpk < log . (2)

pF<z
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A heavy gem: weighted Turan—Kubilius

Theorem 3.8 (F. and Pollack, 2024)

Let o: N — R>q be a multiplicative function satisfying the conditions @ and @
on the previous slide. Then for any additive function f: N — C, we have

Sa(@) ™Y aln) [f(n) — Aas(@)|* < Ba,s(@) 3)

n<lx

for all z > 1, where

k
Aos(@)i= 3 alph) Falp) L2,
pr<z p
min(k—1,0)
_ [ FE)P (1 logp”
Ba,f(x) = ; a(p ) pkg 1 log 3z :
prsT

The implied constant in (3) depends at most on 0, k and the implied constants in
(1) and (2).
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Weighted Turan—Kubilius in action

Fixing a quadratic field K with discriminant A, we take o = lgpjit-free, With partial
sums S, (z) = coz(logz)~/2(1 + O(1/logx)), where

C‘“:\/wull,x)’so'(ﬂw () = (%)

p inert

A crucial step in determining the typical size of L(f) is to estimate the following
cutoff of log ¥ (f):

h(f) = Z logp®, where y = loglog z.
p<ylogy
Pl ()

An application of our weighted Turdn—Kubilius inequality to h(f) yields

/

1 1 c Y
’h(f) —5ylogy — gylogyy — Syl <

logy

for all but o(z/+/logx) split-free f < x, where ¢ is a constant depending on A.
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When elasticity goes to extremes

What is the extremal behavior of p(Oy) over split-free numbers f?

Theorem 3.9 (F. and Pollack, 2025: Maximal order, imaginary case)

Let K be a fixed imaginary quadratic field. Then p(Of) < f for all
split-free f € N. Conversely, p(Op) > p for all non-split primes p.

Theorem 3.10 (F. and Pollack, 2025: Minimal order, imaginary case)

There are universal constants c1,cs, fo > 0 for which the following holds:
Given an imaginary quadratic field K, we have

p(O;) > (log £ o8 os1os

for all split-free numbers f > fo. On the other hand, there is a sequence
of split-free numbers f tending to infinity along which

p(Oy) < (log )28 088,

v
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When elasticity goes to extremes

Theorem 3.11 (F. and Pollack, 2025: Maximal order, real case)
Let K be a real quadratic field. Then

f
log f

for all split-free f > 1. In the opposite direction, GRH implies that for
every € > 0, there are infinitely many primes p, inert in K, with

p(0f) <

p(Op) > pi e

Theorem 3.12 (F. and Pollack, 2025: Minimal order, real case)

Assume GRH. For every real quadratic field K, there is a constant C'x with
the property that p(O¢) < Ck for infinitely many split-free numbers f.
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What lies ahead: average elasticity

What is the average order of p(Oy) over split-free numbers f7?

More precisely, we would like to estimate

M(z) = @
@ =55 X A0
f<z
f split-free
where .
S = 1 ~
(@) ; ‘e gz
f split-free

When K is imaginary, one may expect

x

M(x) = (log 56)1/2_0(1) '
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“A peculiar beauty reigns in the
realm of mathematics, a beauty
which resembles not so much
the beauty of art as the beauty
of nature and which affects the
reflective mind, which has
acquired an appreciation of it,
very much like the latter.”

— Ernst Eduard Kummer

Steve Fan (UGA) UGA NT/AG Seminar March 17, 2025 37



	Arithmetic of Z
	Unique factorization
	Elasticity of a quadratic order

