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Shifted primes

A shifted prime is a number of the form p+ a, where p is prime and
a ∈ Z \ {0}.

In this talk, we will concentrate on the case a = −1, i.e., shifted primes of
the form p− 1.

We say that p− 1 is a shifted-prime divisor of n ∈ N if (p− 1) | n.

For each n ∈ N, we denote by ω∗(n) the number of shifted-prime divisors
of n, i.e.,

ω∗(n) :=
∑

(p−1)|n

1.

Example

Shifted-prime divisors of 24: 1, 2, 4, 6, 12. So ω∗(24) = 5.
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Why shifted primes?

1 Open problems.

Twin primes: Are there infinitely many shifted primes p+ 2 that are
prime?

Sophie Germain primes: Are there infinitely many primes p with
(p− 1)/2 also prime? (The prime q = (p− 1)/2 is then called a Sophie
Germain prime, and p = 2q + 1 is called a safe prime.)

A conjecture of Erdős and Pomerance: For any fixed a ∈ Z \ {0} and
u ∈ [1,∞), we have

#{p ≤ x : P+(p+ a) ≤ x1/u} ∼ ρ(u)π(x), as x→∞,

where P+(p+ a) denotes the largest prime factor of p+ a, π(x) is the
prime counting function, and ρ(u) is the Dickman–de Bruijn function.
Thus, the density of the set of x1/u-smooth shifted primes p+ a
relative to the set of all primes p is asymptotically ρ(u), which is also
the asymptotic density of x1/u-smooth numbers.
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Why shifted primes?

2 Applications.

Carmichael numbers: A Carmichael number n is a composite number
satisfying bn ≡ b (mod n) for all b ∈ Z. Korselt showed in 1899 that
n ∈ N is a Carmichael number if and only if n is square-free, and
p | n⇒ p− 1 | n− 1. Alford, Granville and Pomerance (1994) proved
that for sufficiently large x, the interval [1, x] contains at least x2/7

Carmichael numbers. One of the key ingredients in their proof is a
variant of a result of Prachar on the maximal order of ω∗.

Bernoulli numbers: The von Staudt–Clausen theorem states that
Bn +

∑
(p−1)|n 1/p ∈ Z for every n ∈ 2N. By counting numbers with

large shifted-prime divisors, Erdős and Wagstaff (1980) proved that for
any n ∈ 2N, the set of m ∈ 2N with Bm ≡ Bn (mod 1) has a positive
natural density. Further study of these densities was carried out by
Sunseri (1980) and Pomerance and Wagstaff (2023).

Fermat’s Last Theorem, public key cryptography, primality testing.
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The function ω∗

Recall that
ω∗(n) :=

∑
(p−1)|n

1.

How are the values of ω∗(n) distributed?

It is interesting to compare ω∗(n) with ω(n) and τ(n), where

ω(n) :=
∑
p|n

1,

τ(n) :=
∑
d|n

1.

It is clear that 1 ≤ 2ω(n), ω∗(n) ≤ τ(n).
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ω, τ , and ω∗: extremal orders

The minimal orders of ω, τ and ω∗ are 1, 2, 1, respectively.

For the maximal orders, we have

lim sup
x→∞

ω(n)

log n/ log log n
= 1,

lim sup
x→∞

log τ(n)

log n/ log log n
= log 2. (Wigert, 1907)

Prachar (1955) showed that for infinitely many n,

ω∗(n) > exp

(
c1

log n

(log logn)2

)
(unconditionally),

ω∗(n) > exp

(
(log
√
2− ε) log n

log log n

)
(under GRH),

where c1 > 0 is some absolute constant, and ε > 0 is fixed but otherwise arbitrary.
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ω, τ , and ω∗: extremal orders

Adleman, Pomerance and Rumely (1983) removed one log logn factor
from Prachar’s unconditional bound, obtaining

ω∗(n) > exp

(
c2

log n

log log n

)
for infinitely many n, where c2 > 0 is some absolute constant. Combining
this with Wigert’s result, we have

0 < lim sup
x→∞

logω∗(n)

log n/ log log n
≤ log 2.

Prachar’s conditional result implies that this limsup is ≥ log
√
2.

So, ω∗(n) behaves more like τ(n) than ω(n) at the extreme end of the
spectrum.
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ω, τ , and ω∗: densities

For any arithmetic function f , we denote by δk(f) the natural density of
the level set {n ∈ N : f(n) = k} for each k ∈ N, namely,

δk(f) := lim
x→∞

#{n ≤ x : f(n) = k}
x

,

provided that this limit exists.

Landau (1900) showed that for every fixed
k ∈ N,

#{n ≤ x : ω(n) = k} ∼ 1

(k − 1)!
· x(log log x)

k−1

log x

as x→∞. So δk(ω) = 0. Since τ(n) ≥ 2ω(n), we also have δk(τ) = 0 for
every k ∈ N.

We shall see that δk(ω
∗) > 0 for every k ∈ N!
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ω, τ , and ω∗: normal orders

For any arithmetic function f , we say that the nonnegative function g
(usually simple and nice) is a normal order of f if for every ε > 0,

|f(n)− g(n)| ≤ εg(n)

holds for all but o(x) values of n ∈ N ∩ [1, x].

Hardy and Ramanujan (1917) showed that log log n is a normal order of
ω(n).

For τ(n), it is more convenient to study log2 τ(n) = log τ(n)/ log 2. It can
be shown that just like ω(n), log2 τ(n) has normal order log log n. One
may say that (log n)log 2 is a “normal order” of τ(n).

What about ω∗(n) (or logω∗(n))? No nice normal orders.
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ω, τ , and ω∗: moments and distributions

For any arithmetic function f , we denote by Mk(x; f) the kth moment of
f for each k ∈ N. That is,

Mk(x; f) :=
1

x

∑
n≤x

f(n)k.

For every fixed k ∈ N, we have

Mk(x;ω) ∼ (log log x)k,

Mk(x; τ) ∼ ak(log x)2
k−1,

where

ak :=
1

(2k − 1)!

∏
p

(
1− 1

p

)2k ∑
ν≥0

(ν + 1)k

pν
.
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ω, τ , and ω∗: moments and distributions

In fact, Delange (1953) showed that

1

x

∑
n≤x

(ω(n)− log log n)k = (12N(k) + o(1))(k − 1)!!(log log x)
k
2 , (1)

which implies that

lim
x→∞

1

x
·#
{
n ≤ x : ω(n)− log logn√

log log n
≤ V

}
=

1√
2π

∫ V

−∞
e−v

2/2 dv (2)

for any given V ∈ R. This is the celebrated Erdős–Kac theorem, first
established by Erdős and Kac in 1940. Delange’s result (1) was generalized
by Halberstam (1954) to general additive functions with bounded values
on primes. Particularly, Halberstam’s result implies that (1) and (2)
continue to hold with ω replaced by log2 τ .
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Interlude: ω and τ on shifted primes

The distribution of ω on shifted primes is similar to its distribution on natural
numbers. Erdős (1935) showed that log log p is a normal order of ω(p− 1).

This
was greatly improved by Halberstam (1955) who obtained in particular an
Erdős–Kac theorem for ω on shifted primes p+ a:

lim
x→∞

1

π(x)
·#
{
p ≤ x : ω(p+ a)− log log p√

log log p
≤ V

}
=

1√
2π

∫ V

−∞
e−v

2/2 dv.

Similarly, his results also imply that the same holds with ω replaced by log2 τ .

For τ , Titchmarsh (1931) proved, conditionally on GRH, that

1

π(x)

∑
p≤x

τ(p− 1) ∼ ζ(2)ζ(3)

ζ(6)
log x.

Linnik (1961) gave an unconditional proof based on his complicated dispersion
method. Independently, Rodriguez (1965) and Halberstam (1967) obtained quick
proofs based on the Bombieri–Vinogradov theorem which came out in 1965.
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ω, τ , and ω∗: moments and distributions

Prachar (1955) showed M1(x;ω
∗) ∼ log log x, by observing that

1

x

∑
n≤x

ω∗(n) =
1

x

∑
n≤x

∑
p−1|n

1 =
1

x

∑
p≤x+1

⌊
x

p− 1

⌋

and applying Mertens’ second theorem. Since M1(x;ω) ∼ log log x,
perhaps M2(x;ω

∗) � (log log x)2 just like M2(x;ω)?

Prachar proved M2(x;ω
∗) = O((log x)2). This was improved to O(log x)

by Murty and Murty (2021) who also showed M2(x;ω
∗)� (log log x)3.

They also conjectured M2(x;ω
∗) ∼ C log x for some constant C > 0.

Via a simple application of the Bombieri–Vinogradov theorem, Ding (2023)
obtained the stronger lower bound M2(x;ω

∗)� log x, matching the order
of the upper bound of Murty and Murty. So M2(x;ω

∗) grows more like
M2(x; τ) � (log x)3 with an additional primality constraint placed.
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by Murty and Murty (2021) who also showed M2(x;ω
∗)� (log log x)3.

They also conjectured M2(x;ω
∗) ∼ C log x for some constant C > 0.

Via a simple application of the Bombieri–Vinogradov theorem, Ding (2023)
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ω, τ , and ω∗: moments and distributions

Murty and Murty observed that

M2(x;ω
∗) =

1

x

∑
n≤x

( ∑
p−1|n

1

)2

=
1

x

∑
[p−1,q−1]≤x

⌊
x

[p− 1, q − 1]

⌋
.

An old result of Erdős and Prachar (1955) states that the number of prime
pairs (p, q) with [p− 1, q − 1] ≤ x is O(x). Using this we arrive at

M2(x;ω
∗) =

∑
[p−1,q−1]≤x

1

[p− 1, q − 1]
+O(1).

The upper bound M2(x;ω
∗) = O(log x) follows now from the theorem of

Erdős and Prachar and partial summation. Murty and Murty went on to
conclude that

M2(x;ω
∗) =

∑
p,q≤x

1

[p− 1, q − 1]
+O(1).
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ω, τ , and ω∗: moments and distributions

They proved M2(x;ω
∗)� (log log x)3 by bounding the last sum above. This last

equation above is also the starting point of Ding’s proof that M2(x;ω
∗)� log x.

Based on the same equation, Ding also argued, assuming the Elliott–Halberstam
conjecture, that M2(x;ω

∗) ∼ C log x, where C = 2ζ(2)ζ(3)/ζ(6) ≈ 3.88719.

However, there is a problem with the last equation: Murty and Murty concluded

M2(x;ω
∗) =

∑
[p−1,q−1]≤x

1

[p− 1, q − 1]
+O(1) =

∑
p,q≤x

1

[p− 1, q − 1]
+O(1).

For the second equality to hold, they assumed implicitly that∑
p,q≤x

[p−1,q−1]>x

1

[p− 1, q − 1]
= O(1).

But is this really true? The answer is no.
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Our goals

Our research addresses the following:

1 correcting the error in Ding’s proof of M2(x;ω
∗)� log x;

2 studying the density δk(ω
∗) of the level set {n ∈ N : ω∗(n) = k};

3 investigating higher moments of ω∗, starting with M3(x;ω
∗).
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Confirming the error

Recall our question: ∑
p,q≤x

[p−1,q−1]>x

1

[p− 1, q − 1]
= O(1)?

The following theorem disproves this.

Theorem 1 (F., Pomerance, 2024)

We have ∑
p, q≤x

[p−1,q−1]>x

1

[p− 1, q − 1]
� log x

for sufficiently large x.
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An easy fix

We start with

M2(x;ω
∗) =

1

x

∑
[p−1,q−1]≤x

⌊
x

[p− 1, q − 1]

⌋
.

Note that if p, q ≤
√
x, then [p− 1, q − 1] ≤ (p− 1)(q − 1) < x. Thus,

M2(x;ω
∗) ≥ 1

x

∑
p,q≤

√
x

⌊
x

[p− 1, q − 1]

⌋
=

∑
p,q≤

√
x

1

[p− 1, q − 1]
+O

(
1

log x

)
.

What Ding actually proved is∑
p,q≤x

1

[p− 1, q − 1]
� log x.

Applying this lower bound with
√
x in place of x yields M2(x;ω

∗)� log x. We
also have a new, quick proof of this lower bound independent of Ding’s.
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The constant C

The constant C = 2ζ(2)ζ(3)/ζ(6) ≈ 3.88719 that Ding got for the
Murty–Murty conjecture M2(x;ω

∗) ∼ C log x is probably incorrect. So,
what is the correct value of C?

Let

S2(x;ω
∗) :=

1

x
·#{(p, q) : [p− 1, q − 1] ≤ x}.

The result of Erdős and Prachar is equivalent to S2(x;ω
∗) = O(1). Partial

summation gives the connection between M2(x;ω
∗) and S2(x;ω

∗):

M2(x;ω
∗) =

∫ x

1

S2(t;ω
∗)

t
dt+O(1).

So, the conjecture S2(x;ω
∗) ∼ C implies the Murty–Murty conjecture.
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The constant C

Table 1: Numerical values of M2(10
k;ω∗) and S2(10

k;ω∗)

k M2(10
k;ω∗) S2(10

k;ω∗)

2 9.71 2.42
3 15.530 2.624
4 21.9128 2.8175
5 28.49311 2.88636
6 35.261891 2.950910
7 42.1296839 2.9923851
8 49.02181351 3.02166709
9 56.067311859 3.043042188
10 63.1033824202 3.0595625181

The M2 values seem to fit nicely with 3 log x− 6, and the S2 values may
fit with 3.2(1− 1/ log x). Perhaps C ≈ 3.1?
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The densities δk(ω
∗)

We have seen that δk(ω) = δk(τ) = 0 for every fixed k ∈ N. Consequently, the
densities of the tails {n ∈ N : ω(n) > k} and {n ∈ N : τ(n) > k} are both equal
to 1.

But this is not the case for ω∗.

Theorem 2 (F., Pomerance, 2024)

For x, y ≥ 1, let N(x, y) := #{n ≤ x : ω∗(n) ≥ y}. Then there exists a suitable
constant c > 0 such that for all x ≥ 1 and all sufficiently large y,⌊

x

yc log log y

⌋
≤ N(x, y)� x log y

y
.

The lower bound follows from the result of Adleman, Pomerance and Rumely
(1983) on the maximal order of ω∗, while the proof of the upper bound makes
use of a theorem due to McNew, Pollack and Pomerance (2017), which asserts
that the number of n ≤ x with a shifted prime divisor > y is O(x/(log y)β+o(1)),
where β = 1− (1 + log log 2)/ log 2 is the Erdős–Ford–Tenenbaum constant.
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The densities δk(ω
∗)

Now we turn to the k-level set Lk := {n ∈ N : ω∗(n) = k}.

Theorem 3 (F., Pomerance, 2024)

For every k ∈ N, the k-level set Lk admits a positive natural density δk.
Moreover, we have

∑
k≥1 δk = 1.

In order to establish Theorem 3, one should at least be to able to verify that
Lk 6= ∅. This is the key step in our proof of Theorem 3.

Our strategy: Since L1 = N \ 2N, we may suppose k ≥ 2, so that Lk ⊆ 2N. The
idea is to show that there exists a prime p such that ω∗(n(p− 1)/2) = ω∗(n) + 1,
from which the claim that Lk 6= ∅ follows by induction. To find such a prime, we
appeal to Chen’s theorem which asserts that the number of primes p ≤ x for
which (p− 1)/2 is the product of at most two prime factors, each of which is
> x3/11, is � x/(log x)2. We then show that the number of those unqualified p’s
is negligible, completing the proof of our claim.
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The densities δk(ω
∗)

Table 2: Exact counts of level sets for k < 12

k 104 106 108 1010 ≈ δk
1 5,000 500,000 50,000,000 5,000,000,000 .5
2 834 77,696 7,436,825 720,726,912 .070
3 965 91,602 8,826,498 859,002,140 .084
4 877 79,986 7,691,971 748,412,490 .074
5 612 59,518 5,684,323 555,900,984 .055
6 456 40,641 4,031,009 401,146,301 .040
7 287 29,565 3,016,881 300,330,932 .030
8 202 23,190 2,324,769 233,611,502 .023
9 153 17,914 1,800,298 182,793,491 .018

10 159 13,899 1,401,307 144,740,573 .015
11 103 10,487 1,131,836 118,302,267 .012

≥ 12 352 55,682 6,654,283 735,032,408

The largest values of k encountered here up to the various bounds: 104: 28, 106:
86, 108: 247, 1010: 618. Perhaps the densities δk are monotone for k ≥ 3.
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The densities δk(ω
∗)

In our proof of Theorem 3, we used a result of Erdős and Wagstaff (1980)
concerning the density δ(〈n〉) of 〈n〉 for a given n ∈ N, where

〈n〉 := #{m ∈ N : (p− 1) | m⇔ (p− 1) | n}.

Thus, Bm ≡ Bn (mod 1)⇔ m ∈ 〈n〉.

Note that 〈1〉 = L1 = N \ 2N, so that δ(〈n〉) = 1/2 for odd n. Erdős and
Wagstaff showed that δ(〈n〉) exists and is positive for every n ∈ N. They also
observed that if n = min〈n〉, then δ(〈n〉) < 1/n. In this case, they asked for a
positive lower bound for δ(〈n〉).

Theorem 4 (F., Pomerance, 2024)

Let n ∈ 2N be such that n = min〈n〉. Then

δ(〈n〉) ≥ 1

nO(τ(n))
.

Steve Fan (MPIM Bonn) NTLS February 7, 2024 24 / 32
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The moments Mk(x;ω
∗)

For every k ∈ N, we consider

Mk(x;ω
∗) :=

1

x

∑
n≤x

ω∗(n)k.

Then we have

Mk(x;ω
∗) =

1

x

∑
[p1−1,...,pk−1]≤x

⌊
x

[p1 − 1, ..., pk − 1]

⌋
.

This shows that Mk(x;ω
∗) is intimately related to

Sk(x;ω
∗) :=

1

x
·#{(p1, ..., pk) : [p1 − 1, ..., pk − 1] ≤ x}.

Again, it can be shown by partial summation that if Sk(x;ω
∗)(x) �k (log x)ck for

some absolute constant ck > 0, then Mk(x;ω
∗) �k (log x)ck+1.
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The moments Mk(x;ω
∗)

For k ≥ 2, it is natural to relate the function ω∗(n)k to τ(n)k. Recall that

Mk(x; τ) =
1

x

∑
n≤x

τ(n)k ∼ ak(log x)2
k−1

for every k ≥ 1.

Comparing ω∗ with τ and taking the primality conditions
into account, one may conjecture that

Mk(x;ω
∗) ∼ µk(log x)2

k−k−1,

Sk(x;ω
∗) ∼ (2k − k − 1)µk(log x)

2k−k−2,

for every k ≥ 2, where µk > 0 is a constant depending on k.

We proved the upper and lower bounds for M3(x;ω
∗) of the conjectured

magnitude.
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2k−k−2,

for every k ≥ 2, where µk > 0 is a constant depending on k.

We proved the upper and lower bounds for M3(x;ω
∗) of the conjectured

magnitude.
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The third moment M3(x;ω
∗)

We have the following theorem concerning M3(x;ω
∗).

Theorem 5 (F., Pomerance, 2024)

We have M3(x;ω
∗) � (log x)4 for all x ≥ 2.

Proof ideas:

To prove the upper bound, we show

S3(x;ω
∗) =

1

x
·#{(p, q, r) : [p− 1, q − 1, r − 1] ≤ x} � (log x)3.

To do so, we write

p− 1 = adeg, dg = gcd(p− 1, q − 1),

q − 1 = bdfg, eg = gcd(p− 1, r − 1),

r − 1 = cefg, fg = gcd(q − 1, r − 1),

and g = gcd(p− 1, q − 1, r − 1).

Steve Fan (MPIM Bonn) NTLS February 7, 2024 27 / 32



Shifted primes The distribution of ω∗(n) Our work Future work

The third moment M3(x;ω
∗)

We have the following theorem concerning M3(x;ω
∗).

Theorem 5 (F., Pomerance, 2024)

We have M3(x;ω
∗) � (log x)4 for all x ≥ 2.

Proof ideas:

To prove the upper bound, we show

S3(x;ω
∗) =

1

x
·#{(p, q, r) : [p− 1, q − 1, r − 1] ≤ x} � (log x)3.

To do so, we write

p− 1 = adeg, dg = gcd(p− 1, q − 1),

q − 1 = bdfg, eg = gcd(p− 1, r − 1),

r − 1 = cefg, fg = gcd(q − 1, r − 1),

and g = gcd(p− 1, q − 1, r − 1).

Steve Fan (MPIM Bonn) NTLS February 7, 2024 27 / 32



Shifted primes The distribution of ω∗(n) Our work Future work

The third moment M3(x;ω
∗)

The dictionary on the previous slide:

p− 1 = adeg, dg = gcd(p− 1, q − 1),

q − 1 = bdfg, eg = gcd(p− 1, r − 1),

r − 1 = cefg, fg = gcd(q − 1, r − 1),

and g = gcd(p− 1, q − 1, r − 1). Then [p− 1, q − 1, r − 1] ≤ x becomes
abcdefg ≤ x, subject to the condition that adeg + 1, bdfg + 1 and cefg + 1
are simultaneously prime.

With this set-up, we see by symmetry that there are three possible cases:

m := max{a, b, c, d, e, f, g} = a, d, or g.

In each case, we sum over m with the other variables fixed and use sieve
bounds to estimate the sum with the above primality constraints. Then we
sum the result over the rest of variables in a convenient order and handle the
average of certain nonnegative multiplicative functions over shifted primes.
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The third moment M3(x;ω
∗)

To prove the lower bound, we start with

Mk(x;ω
∗) ≥ 1

2

∑
[p−1,q−1,r−1]≤x/2

1

[p− 1, q − 1, r − 1]
.

Using the convolution identity id = 1 ∗ ϕ, we may write

gcd([p− 1, q − 1], r − 1) =
∑

u|[p−1,q−1]
u|r−1

ϕ(u).

Then we have

1

[p− 1, q − 1, r − 1]
=

1

[p− 1, q − 1](r − 1)

∑
u|[p−1,q−1]

u|r−1

ϕ(u).
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The third moment M3(x;ω
∗)

By considering only the squarefree u’s, we arrive at

Mk(x;ω
∗) ≥ 1

2

∑
r≤z

1

r − 1

∑
u|r−1

µ(u)2ϕ(u)M(y;u),

where y ≥ z are suitable powers of x satisfying yz ≤ x, and

M(y;u) :=
∑

[p−1,q−1]≤y
u|[p−1,q−1]

1

[p− 1, q − 1]
.

The key to handling M(y;u) is the following result due to Alford, Granville
and Pomerance (1994): ∀ε > 0, there exist δ ∈ (0, 1) and x0 ≥ 2, such that∣∣∣∣π(y; k, a)− y

ϕ(k) log y

∣∣∣∣ ≤ ε y

ϕ(k) log y

for all y ≥ x ≥ x0, all k ∈ N ∩ [1, xδ] and all a ∈ Z with gcd(a, k) = 1,
except possibly for those k divisible by a certain number k0(x) > log x.
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Future research

We plan to investigate the following questions:

1 Can we prove good upper and lower bounds for the densities δk(ω
∗)?

2 Can we improve the lower bound for δ(〈n〉) supplied by Theorem 4?

3 What is the true value of C in the Murty–Murty conjecture
M2(x;ω

∗) ∼ C log x?

4 Can we prove upper and lower bounds of the conjectured magnitude
for Mk(x;ω

∗) when k ≥ 4?

5 What is the value of

lim sup
n→∞

logω∗(n)

n/ log log n
?

6 What is the distribution of ω∗ (or logω∗)? What about ω∗(p− 1)?

Steve Fan (MPIM Bonn) NTLS February 7, 2024 31 / 32



Thank you!
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