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Shifted primes
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Shifted primes

A shifted prime is a number of the form p 4+ a, where p is prime and
a € Z\{0}.

In this talk, we will concentrate on the case a = —1, i.e., shifted primes of
the form p — 1.
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Shifted primes
®00

Shifted primes

A shifted prime is a number of the form p 4 a, where p is prime and
a € Z\{0}.

In this talk, we will concentrate on the case a = —1, i.e., shifted primes of
the form p — 1.

We say that p — 1 is a shifted-prime divisor of n € N if (p — 1) | n.

For each n € N, we denote by w*(n) the number of shifted-prime divisors
of m, ie,

Shifted-prime divisors of 24: 1, 2, 4, 6, 12. So w*(24) = 5.
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Why shifted primes?

© Open problems.

o Twin primes: Are there infinitely many shifted primes p + 2 that are
prime?
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Why shifted primes?

© Open problems.
o Twin primes: Are there infinitely many shifted primes p + 2 that are
prime?
o Sophie Germain primes: Are there infinitely many primes p with
(p—1)/2 also prime? (The prime ¢ = (p — 1)/2 is then called a Sophie
Germain prime, and p = 2¢ + 1 is called a safe prime.)
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Shifted primes
oeo

Why shifted primes?

© Open problems.

o Twin primes: Are there infinitely many shifted primes p + 2 that are
prime?

o Sophie Germain primes: Are there infinitely many primes p with
(p—1)/2 also prime? (The prime ¢ = (p — 1)/2 is then called a Sophie
Germain prime, and p = 2¢q + 1 is called a safe prime.)

o A conjecture of Erd8s and Pomerance: For any fixed a € Z \ {0} and
u € [1,00), we have

#{p<xz: Pt(p+a) <z} ~pu)n(z), asz — oo,

where PT(p + a) denotes the largest prime factor of p + a, m(z) is the
prime counting function, and p(u) is the Dickman—de Bruijn function.
Thus, the density of the set of !/“-smooth shifted primes p + a
relative to the set of all primes p is asymptotically p(u), which is also
the asymptotic density of z'/“-smooth numbers.
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Why shifted primes?

@ Applications.

o Carmichael numbers: A Carmichael number n is a composite number
satisfying b™ = b (mod n) for all b € Z. Korselt showed in 1899 that
n € N is a Carmichael number if and only if n is square-free, and
p|ln=p—1|n—1. Alford, Granville and Pomerance (1994) proved
that for sufficiently large z, the interval [1, 2] contains at least z2/7
Carmichael numbers. One of the key ingredients in their proof is a
variant of a result of Prachar on the maximal order of w*.
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Why shifted primes?

@ Applications.

o Carmichael numbers: A Carmichael number n is a composite number
satisfying b™ = b (mod n) for all b € Z. Korselt showed in 1899 that
n € N is a Carmichael number if and only if n is square-free, and
p|ln=p—1|n—1. Alford, Granville and Pomerance (1994) proved
that for sufficiently large z, the interval [1, 2] contains at least z2/7
Carmichael numbers. One of the key ingredients in their proof is a
variant of a result of Prachar on the maximal order of w*.

o Bernoulli numbers: The von Staudt—Clausen theorem states that
B, + Z(p_l)‘n 1/p € Z for every n € 2N. By counting numbers with
large shifted-prime divisors, Erdés and Wagstaff (1980) proved that for
any n € 2N, the set of m € 2N with B,, = B,, (mod 1) has a positive
natural density. Further study of these densities was carried out by
Sunseri (1980) and Pomerance and Wagstaff (2023).
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Shifted primes
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Why shifted primes?

Q Applications.

o Carmichael numbers: A Carmichael number n is a composite number
satisfying b™ = b (mod n) for all b € Z. Korselt showed in 1899 that
n € N is a Carmichael number if and only if n is square-free, and
p|ln=p—1|n—1. Alford, Granville and Pomerance (1994) proved
that for sufficiently large z, the interval [1, 2] contains at least z2/7
Carmichael numbers. One of the key ingredients in their proof is a
variant of a result of Prachar on the maximal order of w*.

o Bernoulli numbers: The von Staudt—Clausen theorem states that
B, + Z(p_l)‘n 1/p € Z for every n € 2N. By counting numbers with
large shifted-prime divisors, Erdés and Wagstaff (1980) proved that for
any n € 2N, the set of m € 2N with B,, = B,, (mod 1) has a positive
natural density. Further study of these densities was carried out by
Sunseri (1980) and Pomerance and Wagstaff (2023).

o Fermat’s Last Theorem, public key cryptography, primality testing.
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The distribution of w™ (n)
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The function w*

Recall that

How are the values of w*(n) distributed?
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The distribution of w™ (n)
©0000000000

The function w*

Recall that

How are the values of w*(n) distributed?

It is interesting to compare w*(n) with w(n) and 7(n), where

It is clear that 1 < 2" w*(n) < 7(n).
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The distribution of w™ (n)
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w, T, and w*: extremal orders

The minimal orders of w, 7 and w* are 1, 2, 1, respectively.
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The distribution of w™ (n)
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w, T, and w*: extremal orders

The minimal orders of w, 7 and w* are 1, 2, 1, respectively.

For the maximal orders, we have

limsu w(n) =
it logn/loglogn
1
lim sup L(n) =log2. (Wigert, 1907)

z—oo logn/loglogn
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The distribution of w™ (n)
0®000000000

w, T, and w*: extremal orders

The minimal orders of w, 7 and w* are 1, 2, 1, respectively.

For the maximal orders, we have

limsu w(n) =
it logn/loglogn
1
lim sup L(n) =log2. (Wigert, 1907)

z—oo logn/loglogn
Prachar (1955) showed that for infinitely many n,

logn

w*(n) > exp (cl( ) (unconditionally),

loglogn)?
logn

w*(n) > exp <(log\/_ - e)w

> (under GRH),

where ¢; > 0 is some absolute constant, and € > 0 is fixed but otherwise arbitrary.
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The distribution of w™ (n)
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w, T, and w*: extremal orders

Adleman, Pomerance and Rumely (1983) removed one log logn factor
from Prachar’s unconditional bound, obtaining

N logn
w (TL) > exXp (CQ@)

for infinitely many n, where co > 0 is some absolute constant. Combining
this with Wigert's result, we have
log w*(n)

0 < limsup

— =7 < log?2.
z—oo logn/loglogn 8

Prachar’s conditional result implies that this limsup is > log v/2.

So, w*(n) behaves more like 7(n) than w(n) at the extreme end of the
spectrum.
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The distribution of w™ (n)
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w, T, and w*: densities

For any arithmetic function f, we denote by dx(f) the natural density of
the level set {n € N: f(n) = k} for each k € N, namely,

5u(f) = lim TR ST S =k}

T—00 €T

provided that this limit exists.
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The distribution of w™ (n)
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w, T, and w*: densities

For any arithmetic function f, we denote by dx(f) the natural density of
the level set {n € N: f(n) = k} for each k € N, namely,

0k(f) == lim ,

T—00 €T

provided that this limit exists. Landau (1900) showed that for every fixed

keN,
1 z(loglog z)+~1

(k—1) log x

#{n<z:wh)=k}~

as x — 00. So 0 (w) = 0. Since 7(n) > 2*, we also have §;(7) = 0 for
every k € N.
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The distribution of w™ (n)
000®0000000

w, T, and w*: densities

For any arithmetic function f, we denote by dx(f) the natural density of
the level set {n € N: f(n) = k} for each k € N, namely,

Ok (f) := lim . ,
provided that this limit exists. Landau (1900) showed that for every fixed

keN,
1 z(loglog z)+~1

(k—1) log x

#{n<z:wh)=k}~

as x — 00. So 0 (w) = 0. Since 7(n) > 2*, we also have §;(7) = 0 for
every k € N.

We shall see that dj(w*) > 0 for every k € N!
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The distribution of w™ (n)
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w, 7, and w*: normal orders

For any arithmetic function f, we say that the nonnegative function ¢
(usually simple and nice) is a normal order of f if for every € > 0,

[f(n) = g(n)| < eg(n)

holds for all but o(x) values of n € NN [1, z].
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The distribution of w™ (n)
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w, 7, and w*: normal orders

For any arithmetic function f, we say that the nonnegative function ¢
(usually simple and nice) is a normal order of f if for every € > 0,

[f(n) = g(n)| < eg(n)
holds for all but o(x) values of n € NN [1, z].

Hardy and Ramanujan (1917) showed that loglogn is a normal order of
w(n).
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w, 7, and w*: normal orders

For any arithmetic function f, we say that the nonnegative function ¢
(usually simple and nice) is a normal order of f if for every € > 0,

[f(n) = g(n)| < eg(n)
holds for all but o(x) values of n € NN [1, z].

Hardy and Ramanujan (1917) showed that loglogn is a normal order of
w(n).

For 7(n), it is more convenient to study logy 7(n) = log 7(n)/log 2. It can
be shown that just like w(n), log, 7(n) has normal order loglogn. One
may say that (logn)'°82 is a “normal order” of 7(n).
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w, 7, and w*: normal orders

For any arithmetic function f, we say that the nonnegative function ¢
(usually simple and nice) is a normal order of f if for every € > 0,

[f(n) = g(n)| < eg(n)
holds for all but o(x) values of n € NN [1, z].

Hardy and Ramanujan (1917) showed that loglogn is a normal order of
w(n).

For 7(n), it is more convenient to study logy 7(n) = log 7(n)/log 2. It can
be shown that just like w(n), log, 7(n) has normal order loglogn. One
may say that (logn)'°82 is a “normal order” of 7(n).

What about w*(n) (or logw*(n))?
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The distribution of w™ (n)
0000®000000

w, 7, and w*: normal orders

For any arithmetic function f, we say that the nonnegative function ¢
(usually simple and nice) is a normal order of f if for every € > 0,

[f(n) = g(n)| < eg(n)
holds for all but o(x) values of n € NN [1, z].

Hardy and Ramanujan (1917) showed that loglogn is a normal order of
w(n).

For 7(n), it is more convenient to study logy 7(n) = log 7(n)/log 2. It can
be shown that just like w(n), log, 7(n) has normal order loglogn. One
may say that (logn)'°82 is a “normal order” of 7(n).

What about w*(n) (or logw*(n))? No nice normal orders.
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The distribution of w™ (n)
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w, 7, and w*: moments and distributions

For any arithmetic function f, we denote by My (x; f) the kth moment of
f for each k € N. That is,

My f) = 3 f)

n<x
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The distribution of w™ (n)
00000®00000

w, 7, and w*: moments and distributions

For any arithmetic function f, we denote by My (x; f) the kth moment of
f for each k € N. That is,

My f) = 3 f)

n<x
For every fixed k € N, we have

Mi(w;w) ~ (loglog )",

My (z;7) ~ ag(log a:)2k_1,

where

o 1\ = (v + 1)
womell(o5) T

v>0
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The distribution of w™ (n)
000000e0000

w, 7, and w*: moments and distributions

In fact, Delange (1953) showed that

% Z(w(n) —loglogn)* = (1an(k) + o(1))(k — 1)!!(loglog$)§, (1)

n<x

which implies that

1 w(n) — loglogn 1 /V —v2/2
lim — - < <Vp=— Ay (2
xggo:c #{n_w loglogn Vor _Ooe v ()

for any given V € R. This is the celebrated Erdés—Kac theorem, first
established by Erdés and Kac in 1940. Delange’s result (1) was generalized
by Halberstam (1954) to general additive functions with bounded values
on primes. Particularly, Halberstam's result implies that (1) and (2)
continue to hold with w replaced by log, 7.
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The distribution of w™ (n)
0000000e000

Interlude: w and 7 on shifted primes

The distribution of w on shifted primes is similar to its distribution on natural
numbers. Erd8s (1935) showed that loglogp is a normal order of w(p — 1).
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The distribution of w™ (n)
0000000e000

Interlude: w and 7 on shifted primes

The distribution of w on shifted primes is similar to its distribution on natural
numbers. Erd8s (1935) showed that loglogp is a normal order of w(p — 1). This
was greatly improved by Halberstam (1955) who obtained in particular an
Erdés—Kac theorem for w on shifted primes p + a:

. 1 w(p+a) —loglogp } 1 /V v?/2
lim —- <zx: <Vi=— e V2 du.
z—o00 () 7 {p - vl1oglogp - V2T J—so

Similarly, his results also imply that the same holds with w replaced by log, 7.
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Interlude: w and 7 on shifted primes

The distribution of w on shifted primes is similar to its distribution on natural
numbers. Erd8s (1935) showed that loglogp is a normal order of w(p — 1). This
was greatly improved by Halberstam (1955) who obtained in particular an
Erdés—Kac theorem for w on shifted primes p + a:

. 1 w(p+a) —loglogp } 1 /V v?/2
lim —- <zx: <Vi=— e V2 du.
z—o0 77(x) 7 {p - vl1oglogp - V2T J—so

Similarly, his results also imply that the same holds with w replaced by log, 7.

For 7, Titchmarsh (1931) proved, conditionally on GRH, that

1 2)C(3
mZT(p— 1) ~ %logaﬁ.

p<z

Linnik (1961) gave an unconditional proof based on his complicated dispersion
method. Independently, Rodriguez (1965) and Halberstam (1967) obtained quick
proofs based on the Bombieri-Vinogradov theorem which came out in 1965.
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The distribution of w™ (n)
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w, 7, and w*: moments and distributions

Prachar (1955) showed M (x;w*) ~ loglog x, by observing that

DIGUEE)SDIETD WPy

n<z n<x p—1|n p<z+1

and applying Mertens' second theorem. Since M (x;w) ~ loglog x,
perhaps My (z;w*) < (loglog x)? just like My (z;w)?
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The distribution of w™ (n)
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w, 7, and w*: moments and distributions

Prachar (1955) showed M (x;w*) ~ loglog x, by observing that

DIGUEE)SDIETD WPy

n<z n<x p—1|n p<z+1

and applying Mertens' second theorem. Since M (x;w) ~ loglog x,
perhaps My (z;w*) < (loglog x)? just like My (z;w)?

Prachar proved Ms(z;w*) = O((log x)?). This was improved to O(log )
by Murty and Murty (2021) who also showed Ms(x;w*) > (loglog x)3.
They also conjectured My (x;w*) ~ C'logx for some constant C' > 0.
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The distribution of w™ (n)
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w, 7, and w*: moments and distributions

Prachar (1955) showed M (x;w*) ~ loglog x, by observing that

DIGUEE)SDIETD WPy

n<z n<x p—1|n p<z+1

and applying Mertens' second theorem. Since M (x;w) ~ loglog x,
perhaps My (z;w*) < (loglog x)? just like My (z;w)?

Prachar proved Ms(z;w*) = O((log x)?). This was improved to O(log )
by Murty and Murty (2021) who also showed Ms(x;w*) > (loglog x)3.
They also conjectured My (x;w*) ~ C'logx for some constant C' > 0.

Via a simple application of the Bombieri—Vinogradov theorem, Ding (2023)
obtained the stronger lower bound Mj(xz;w*) > log 2, matching the order
of the upper bound of Murty and Murty.
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w, 7, and w*: moments and distributions

Prachar (1955) showed M (x;w*) ~ loglog x, by observing that

DIGUEE)SDIETD WPy

n<z n<x p—1|n p<z+1

and applying Mertens' second theorem. Since M (x;w) ~ loglog x,
perhaps My (z;w*) < (loglog x)? just like My (z;w)?

Prachar proved Ms(z;w*) = O((log x)?). This was improved to O(log )
by Murty and Murty (2021) who also showed Ms(x;w*) > (loglog x)3.
They also conjectured My (x;w*) ~ C'logx for some constant C' > 0.

Via a simple application of the Bombieri—Vinogradov theorem, Ding (2023)
obtained the stronger lower bound Mj(xz;w*) > log 2, matching the order
of the upper bound of Murty and Murty. So My (x;w*) grows more like
My (z;7) < (log x)3 with an additional primality constraint placed.
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The distribution of w™ (n)
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w, 7, and w*: moments and distributions

Murty and Murty observed that

2

1 1 x

My (z;w*) = — 1] =- — .

w32 (21) =1 el
n<a \p—lln [p—1g-1]<z

An old result of Erd3s and Prachar (1955) states that the number of prime

pairs (p,q) with [p —1,qg — 1] < z is O(z). Using this we arrive at

Myww)= Y — o)

-t e P La
The upper bound Ms(z;w*) = O(log x) follows now from the theorem of
Erd6s and Prachar and partial summation. Murty and Murty went on to

conclude that

Mg(x;w*) = p;m qu—l] + 0(1)
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w, 7, and w*: moments and distributions

They proved My (x;w*) > (loglog )3 by bounding the last sum above. This last
equation above is also the starting point of Ding's proof that Ms(x; w*) > log .
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The distribution of w™ (n)
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w, 7, and w*: moments and distributions

They proved My (x;w*) > (loglog )3 by bounding the last sum above. This last
equation above is also the starting point of Ding's proof that Ms(x; w*) > log .

Based on the same equation, Ding also argued, assuming the Elliott—Halberstam
conjecture, that My (z;w*) ~ C'logz, where C' = 2¢(2)((3)/¢(6) ~ 3.88719.
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The distribution of w™ (n)
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w, 7, and w*: moments and distributions

They proved My (x;w*) > (loglog )3 by bounding the last sum above. This last
equation above is also the starting point of Ding's proof that Ms(x; w*) > log .

Based on the same equation, Ding also argued, assuming the Elliott—Halberstam
conjecture, that Ms(x;w*) ~ Clogz, where C' = 2¢(2)¢(3)/¢(6) ~ 3.88719.

However, there is a problem with the last equation: Murty and Murty concluded

My(z;w) = > ;+0(1)=Z;+0(1).

po1gij<e P~ L2~ 1] = p-1a-1]

For the second equality to hold, they assumed implicitly that

1
2 [p—1,q-1] =ow).

p,q<z
[p—1,g-1]>z

But is this really true?
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w, 7, and w*: moments and distributions

They proved My (x;w*) > (loglog )3 by bounding the last sum above. This last
equation above is also the starting point of Ding's proof that Ms(x; w*) > log .

Based on the same equation, Ding also argued, assuming the Elliott—Halberstam
conjecture, that Ms(x;w*) ~ Clogz, where C' = 2¢(2)¢(3)/¢(6) ~ 3.88719.

However, there is a problem with the last equation: Murty and Murty concluded

My(z;w) = > ;+0(1)=Z;+0(1).

po1gij<e P~ L2~ 1] = p-1a-1]

For the second equality to hold, they assumed implicitly that

1
2 [p—1,q-1] =ow).

p,q<z
[p—1,g-1]>z

But is this really true? The answer is no.
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Our goals

Our research addresses the following:
@ correcting the error in Ding's proof of My (z;w*) > log z;
@ studying the density dx(w*) of the level set {n € N: w*(n) = k};
@ investigating higher moments of w*, starting with M3(z;w*).
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Confirming the error

Recall our question:

1
s L _onpy
p.a<z p=1g-1]
[p—1,g—1]>x
The following theorem disproves this.

Theorem 1 (F., Pomerance, 2024)

We have

Z 1 > logx
S, Pp-La—1]
p—1,g—1]>x

for sufficiently large x.
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An easy fix

We start with .
x
M) =1 Y|
—1,g—-1
¥ p-tg-11<a p=ta=1]
Note that if p,q < \/z, then [p— 1, — 1] < (p—1)(¢ — 1) < z. Thus,

w22 ¥ |pmy|= ¥ pmr o ()

4 — 1
2,q<Vx 2,9<Vx

What Ding actually proved is

1
Z m > logz.

p,q<z

Applying this lower bound with /z in place of z yields My (z;w*) > logz. We
also have a new, quick proof of this lower bound independent of Ding's.
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Our work
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The constant C

The constant C' = 2¢(2)((3)/¢(6) ~ 3.88719 that Ding got for the
Murty—Murty conjecture M (z;w*) ~ C'logz is probably incorrect. So,
what is the correct value of C7
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The constant C

The constant C' = 2¢(2)((3)/¢(6) ~ 3.88719 that Ding got for the
Murty—Murty conjecture M (z;w*) ~ C'logz is probably incorrect. So,
what is the correct value of C7

Let 1
So(w;w") = —-#{(pa): [~ Lg —1] < x}.

The result of Erdés and Prachar is equivalent to Sa(x;w*) = O(1). Partial
summation gives the connection between Mas(x;w*) and Sa(x; w™):

Ms(z;w*) = /1:0 m dt+ O(1).

So, the conjecture Sa(z;w*) ~ C implies the Murty—Murty conjecture.
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The constant C

Table 1: Numerical values of My(10%;w*) and S5 (10%;w*)

k| My(10%;w*) So(10%; w*)
2 [971 2.42

3 |15.530 2.624

4 |21.9128 2.8175

5 | 28.49311 2.88636

6 | 35.261891 2.950910

7 | 42.1296839 2.9923851

8 | 49.02181351 | 3.02166709

9 | 56.067311859 | 3.043042188
10 | 63.1033824202 | 3.0595625181

The M> values seem to fit nicely with 3logx — 6, and the S5 values may
fit with 3.2(1 — 1/logz). Perhaps C ~ 3.17
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The densities 0y (w*)

We have seen that i (w) = dx(7) = 0 for every fixed k € N. Consequently, the
densities of the tails {n € N: w(n) > k} and {n € N: 7(n) > k} are both equal
to 1.
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The densities 0y (w*)

We have seen that i (w) = dx(7) = 0 for every fixed k € N. Consequently, the
densities of the tails {n € N: w(n) > k} and {n € N: 7(n) > k} are both equal
to 1. But this is not the case for w*.

Theorem 2 (F., Pomerance, 2024)

Forx,y > 1, let N(z,y) := #{n < z: w*(n) > y}. Then there exists a suitable
constant ¢ > 0 such that for all z > 1 and all sufficiently large y,

1
s | < e < 252

yc loglogy

The lower bound follows from the result of Adleman, Pomerance and Rumely
(1983) on the maximal order of w*, while the proof of the upper bound makes
use of a theorem due to McNew, Pollack and Pomerance (2017), which asserts
that the number of n < 2 with a shifted prime divisor > y is O(z/(log y)?+°(),
where 8 =1 — (1 +loglog 2)/log?2 is the Erdés—Ford—Tenenbaum constant.
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Now we turn to the k-level set £, := {n € N: w*(n) = k}.

Theorem 3 (F., Pomerance, 2024)

For every k € N, the k-level set Ly admits a positive natural density §j.
Moreover, we have ), ., 6 = 1.

In order to establish Theorem 3, one should at least be to able to verify that
Ly, # 0. This is the key step in our proof of Theorem 3.
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Now we turn to the k-level set £, := {n € N: w*(n) = k}.

Theorem 3 (F., Pomerance, 2024)

For every k € N, the k-level set Ly admits a positive natural density §j.
Moreover, we have )", ., 6 = 1.

In order to establish Theorem 3, one should at least be to able to verify that
Ly, # 0. This is the key step in our proof of Theorem 3.

Our strategy: Since £1 = N\ 2N, we may suppose k > 2, so that £, C 2N. The
idea is to show that there exists a prime p such that w*(n(p — 1)/2) = w*(n) +1,
from which the claim that £ # 0 follows by induction. To find such a prime, we
appeal to Chen’s theorem which asserts that the number of primes p < x for
which (p —1)/2 is the product of at most two prime factors, each of which is

> 23/ is > /(log z)2. We then show that the number of those unqualified p's
is negligible, completing the proof of our claim.
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Table 2: Exact counts of level sets for k < 12

k] 107 10° 10° 107 [ ~ o
1 [ 5,000 | 500,000 | 50,000,000 | 5,000,000,000 5
2| 834| 77,696 | 7,436,825 | 720,726,912 || .070
3| 965| 91,602 | 8,826,498 | 859,002,140 || .084
4| 877 | 79,986 | 7,691,971 | 748,412,490 | .074
5| 612 | 59,518 | 5,684,323 | 555,900,984 || .055
6| 456 | 40,641 | 4,031,009 | 401,146,301 | .040
7| 287 | 20565 | 3,016,881 | 300,330,932 || .030
8| 202 | 23,190 | 2,324,769 | 233,611,502 || .023
9| 153 | 17,914 | 1,800,298 | 182,793,491 | .018
10 | 159 | 13,899 | 1,401,307 | 144,740,573 || .015
11| 103 | 10487 | 1,131,836 | 118,302,267 || .012
>12 | 352 | 55682 | 6,654,283 | 735,032,408

The largest values of k encountered here up to the various bounds: 10%: 28, 106:
86, 108: 247, 10'%: 618. Perhaps the densities d;, are monotone for k > 3.
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The densities 0y (w*)

In our proof of Theorem 3, we used a result of Erdés and Wagstaff (1980)
concerning the density 6((n)) of (n) for a given n € N, where

(n) :=#{meN: (p—1) [m& (p—1)[n}.

Thus, B,, = B, (mod 1) & m € (n).
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The densities 0y (w*)

In our proof of Theorem 3, we used a result of Erdés and Wagstaff (1980)
concerning the density 6((n)) of (n) for a given n € N, where

(n) :=#{meN: (p—1) [m& (p—1)[n}.
Thus, B,, = B, (mod 1) & m € (n).

Note that (1) = £1 = N\ 2N, so that §({n)) = 1/2 for odd n. Erdés and
Wagstaff showed that 6((n)) exists and is positive for every n € N. They also
observed that if n = min(n), then §((n)) < 1/n. In this case, they asked for a
positive lower bound for 6({n}).
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The densities 0y (w*)

In our proof of Theorem 3, we used a result of Erdés and Wagstaff (1980)
concerning the density 6((n)) of (n) for a given n € N, where

(n) :=#{meN: (p—1) [m& (p—1)[n}.

Thus, B,, = B, (mod 1) & m € (n).

Note that (1) = £1 = N\ 2N, so that §({n)) = 1/2 for odd n. Erdés and
Wagstaff showed that 6((n)) exists and is positive for every n € N. They also
observed that if n = min(n), then §((n)) < 1/n. In this case, they asked for a
positive lower bound for 6({n}).

Theorem 4 (F., Pomerance, 2024)

Let n € 2N be such that n = min(n). Then
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The moments My (x; w")

For every k € N, we consider

My (z; w*) = % Zw*(n)k

n<x

Then we have

ety |

1, -1
T it 1l<a [Pr =1, s = 1]

This shows that My (z;w*

~—

is intimately related to

Sk(x;w*) ==

SN

: #{(pla "'apk): [pl - ]-7 s Pk — 1] S IIZ}

Again, it can be shown by partial summation that if Sy (z; w*)(z) < (logz)°* for
some absolute constant c; > 0, then My, (z;w*) <3, (logz)+1.
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The moments My (x; w")

For k > 2, it is natural to relate the function w*(n)¥ to 7(n)*. Recall that

M) =+ 3070 ~ axllog)? !

n<z

for every k > 1.
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The moments My (x; w")

For k > 2, it is natural to relate the function w*(n)¥ to 7(n)*. Recall that

M) =+ 3070 ~ axllog)? !

n<z

for every k > 1. Comparing w* with 7 and taking the primality conditions
into account, one may conjecture that

M (w37) ~ puy(log w)* ~+7,
Sp(w;w*) ~ (28 — k — Dy (log )2 +2,

for every k > 2, where uj, > 0 is a constant depending on k.
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The moments My (x; w")

For k > 2, it is natural to relate the function w*(n)¥ to 7(n)*. Recall that
1 k_
My(z;7) = — ) 7(n)* ~ ag(loga)” !
r n<lx

for every k > 1. Comparing w* with 7 and taking the primality conditions
into account, one may conjecture that

My (z;w*) ~ ug(log :c)Qk*kfl

Sp(w;w*) ~ (28 — k — Dy (log )2 +2,

)

for every k > 2, where uj, > 0 is a constant depending on k.

We proved the upper and lower bounds for M3(x;w*) of the conjectured
magnitude.
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The third moment M;(x;w™*)
We have the following theorem concerning M5 (z;w*).

Theorem 5 (F., Pomerance, 2024)

We have M3(z;w*) < (logz)? for all z > 2.

Steve Fan (MPIM Bonn) NTLS February 7, 2024 27/32



Our work

00000000000 e000

The third moment M;(z;w™)

We have the following theorem concerning M5 (z;w*).

Theorem 5 (F., Pomerance, 2024)

We have M3(z;w*) < (logz)? for all z > 2.

Proof ideas:

@ To prove the upper bound, we show

S3(z;w*) = é -#{(p,q,r): p—l,¢g—-1Lr—-1 <z} K (logx)g.

To do so, we write

p— 1= adeg, dg = ged(p — 1,9 — 1),
q_lzbdfga egngd(p—l,T—l),
r—1=cefg, fg=ged(qg—1,7r-1),

and g =ged(p— 1,9 — 1,7 —1).
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The third moment M;(x;w™*)

The dictionary on the previous slide:

p — 1 = adeg, dg =ged(p— 1,9 — 1),
q—1=bdfy, eg =ged(p — 1,7 — 1),
r—l:cefg, fg=ng(q—1,7‘—1),

and g =ged(p—1,q— 1,7 —1). Then [p—1,q — 1, — 1] < x becomes
abcdefg < x, subject to the condition that adeg + 1, bdfg + 1 and cefg + 1
are simultaneously prime.
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The third moment M;(z;w™)

The dictionary on the previous slide:

p — 1 = adeg, dg =ged(p— 1,9 — 1),
q—1=bdfy, eg =ged(p — 1,7 — 1),
r—l:cefg, fg=ng(q—1,7‘—l),

and g =ged(p—1,q— 1,7 —1). Then [p—1,q — 1, — 1] < x becomes
abcdefg < x, subject to the condition that adeg + 1, bdfg+ 1 and cefg+1
are simultaneously prime.

With this set-up, we see by symmetry that there are three possible cases:
m :=max{a,b,c,d,e, f,g} = a,d, org.

In each case, we sum over m with the other variables fixed and use sieve
bounds to estimate the sum with the above primality constraints. Then we
sum the result over the rest of variables in a convenient order and handle the
average of certain nonnegative multiplicative functions over shifted primes.
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@ To prove the lower bound, we start with

1 1
Mp(z;w") Ei'§ j{:
[p_lzq_177'—1]§x/2

[p_17q_17

r—1]°

Using the convolution identity id = 1 % ¢, we may write

gedp—Lg—1r—1)= S o).

ulr—1

Then we have

1 1
P—1lq—1r—1 [p-Llqg-1@r—1) ST pw).

ullp—Tg-1]
ulr—1
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The third moment M;(x;w™*)

By considering only the squarefree u's, we arrive at

(z;w* _2Zr_1 M(y; w),

r<z u|lr—1

where y > z are suitable powers of x satisfying yz < x, and

1
[p—1,9-1]<y ’
u|[p—1,q—1]
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The third moment M;(z;w™)

By considering only the squarefree u's, we arrive at

p(w)?p(w) M (y;u),

where y > z are suitable powers of x satisfying yz < x, and

M= 3 !

[p—1,q—1]<y [p - 1aq - 1]
ul|[p—1,g—1]

The key to handling M (y; u) is the following result due to Alford, Granville
and Pomerance (1994): Ve > 0, there exist § € (0,1) and zp > 2, such that

m(y; k,a) — <e
Wik, a) = i logy| = ol logy

forally >z > xg, all ke NN [1,1“5] and all a € Z with ged(a, k) =1,
except possibly for those k divisible by a certain number ko(x) > log .

Y ‘ Y
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°

Future research

We plan to investigate the following questions:
@ Can we prove good upper and lower bounds for the densities dx(w*)?
@ Can we improve the lower bound for §((n)) supplied by Theorem 47

© What is the true value of C' in the Murty—Murty conjecture
My (z;w*) ~ Clog z?

@ Can we prove upper and lower bounds of the conjectured magnitude
for My (z;w*) when k > 47

@ What is the value of

1 *
lim sup 08w ) (n) ?
n—r00 n/ 10g 10g n

@ What is the distribution of w* (or logw*)? What about w*(p — 1)?
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Thank you!
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